版权说明 操作指南
首页 > 成果 > 详情

Syntactic Edge-Enhanced Graph Convolutional Networks for Aspect-Level Sentiment Classification With Interactive Attention

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Xiao, Yao;Zhou, Guangyou*
通讯作者:
Zhou, Guangyou
作者机构:
[Xiao, Yao] Cent China Normal Univ, Wollongong Joint Inst, Wuhan 430079, Peoples R China.
[Zhou, Guangyou] Cent China Normal Univ, Sch Comp Sci, Wuhan 430079, Peoples R China.
通讯机构:
[Zhou, Guangyou] C
Cent China Normal Univ, Sch Comp Sci, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Syntactics;Solid modeling;Semantics;Manganese;Encoding;Sentiment analysis;Natural language processing;sentiment analysis;text mining;graph convolutional networks
期刊:
IEEE ACCESS
ISSN:
2169-3536
年:
2020
卷:
8
页码:
157068-157080
基金类别:
Fundamental Research Funds for the Central UniversitiesFundamental Research Funds for the Central Universities [KJ02072019-0383]
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
伍伦贡联合研究院
摘要:
Aspect-level sentiment classification is a hot research topic in natural language processing (NLP). One of the key challenges is that how to develop effective algorithms to model the relationships between aspects and opinion words appeared in a sentence. Among the various methods proposed in the literature, the graph convolutional networks (GCNs) achieve the promising results due to their good ability to capture the long distance between the aspects and the opinion words. However, the existing methods cannot effectively leverage the edge information of dependency parsing tree, resulting in the...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com