版权说明 操作指南
首页 > 成果 > 详情

An Intelligent Adaptive Algorithm for Environment Parameter Estimation in Smart Cities

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wu, Mou;Xiong, Neal N.*;Tan, Liansheng(谭连生
通讯作者:
Xiong, Neal N.
作者机构:
[Wu, Mou] Hubei Univ Sci & Technol, Sch Comp Sci & Technol, Xianning 437100, Peoples R China.
[Xiong, Neal N.] Northeastern State Univ, Dept Math & Comp Sci, Tahlequah, OK 73096 USA.
[Tan, Liansheng] Cent China Normal Univ, Dept Comp Sci, Wuhan 430079, Hubei, Peoples R China.
通讯机构:
[Xiong, Neal N.] N
Northeastern State Univ, Dept Math & Comp Sci, Tahlequah, OK 73096 USA.
语种:
英文
关键词:
Smart city;distributed estimation;LMS adaptive algorithm;variable step-size
期刊:
IEEE Access
ISSN:
2169-3536
年:
2018
卷:
6
页码:
23325-23337
基金类别:
National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [61672258]; Scientific Research Project of Education Department of Hubei Province [B2017181]
机构署名:
本校为其他机构
院系归属:
计算机学院
摘要:
Least mean squares (LMS) adaptive algorithms are attractive for distributed environment parameter estimation problems in a smart city due to the benefits of cooperation, adaptation, and rapid convergence. To obtain a reliable estimate of the network-wide parameter vector, local results can be further fused by intermediate agents in a distributed incremental way. In this paper, we propose an intelligent variable step size incremental LMS (VSS-ILMS) algorithm to solve the dilemma between fast convergence rate and low mean-square deviation (MSD) in conventional incremental LMS (ILMS) algorithms. ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com