It is of great importance to recommend collaborators for scholars in academic social networks, which can benefit more scientific research results. Facing the problem of data sparsity of co-author recommendation in academic social networks, a novel recommendation algorithm named HeteroRWR (Heterogeneous Random Walk with Restart) is proposed. Different from the basic Random Walk with Restart (RWR) model which only walks in homogeneous networks, HeteroRWR implements multiple random walks in a heterogeneous network which integrates a citation network and a co-authorship network to mine the k mostl...