版权说明 操作指南
首页 > 成果 > 详情

A three-way c-means algorithm

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhang, Kai*
通讯作者:
Zhang, Kai
作者机构:
[Zhang, Kai] Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan, Hubei, Peoples R China.
[Zhang, Kai] Cent China Normal Univ, Natl Engn Lab Educ Big Data, Wuhan, Hubei, Peoples R China.
[Zhang, Kai] Univ Regina, Dept Comp Sci, Regina, SK, Canada.
通讯机构:
[Zhang, Kai] C
Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan, Hubei, Peoples R China.
语种:
英文
关键词:
Rough k-means;Soft clustering;Three-way
期刊:
Applied Soft Computing
ISSN:
1568-4946
年:
2019
卷:
82
页码:
105536
基金类别:
This research financially supported by the National Key R&D Program of China ( 2017YFB1401300 , 2017YFB1401303 ), the program of China Scholarship Council (Grant No. 201606775044 ), and the Fundamental Research Funds for the Central University, China (Grant No. CCNU19QN027, CCNU19ZN005 ).
机构署名:
本校为第一且通讯机构
院系归属:
国家数字化学习工程技术研究中心
摘要:
Rough k-means (RKM) is an effective algorithm to deal with uncertain boundary clustering, and it has a variety of extensions since appeared. In RKM and its extensions, data points are coupled with empirical weights to calculate means of clusters, whereas the empirical weights could not necessarily be accurate in all scenarios. In this paper, we propose a three-way weight for each data point according to its inherent characteristics, which can make the weight more accurate. Next, we propose a three-way assignment to assign data points into clust...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com