版权说明 操作指南
首页 > 成果 > 详情

An effective multi-task learning framework for drug repurposing based on graph representation learning

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Ye, Shengwei;Zhao, Weizhong;Shen, Xianjun;Jiang, Xingpeng;He, Tingting
通讯作者:
Zhao, WZ
作者机构:
[Shen, Xianjun; Zhao, Weizhong; Zhao, WZ; He, Tingting; Jiang, Xingpeng; Ye, Shengwei] Cent China Normal Univ, Hubei Prov Key Lab Artificial Intelligence & Smart, Wuhan 430079, Hubei, Peoples R China.
[Shen, Xianjun; Zhao, Weizhong; He, Tingting; Jiang, Xingpeng; Ye, Shengwei] Cent China Normal Univ, Sch Comp, Wuhan 430079, Hubei, Peoples R China.
[Shen, Xianjun; Zhao, Weizhong; He, Tingting; Jiang, Xingpeng; Ye, Shengwei] Cent China Normal Univ, Natl Language Resources Monitoring & Res Ctr Netwo, Wuhan 430079, Hubei, Peoples R China.
通讯机构:
[Zhao, WZ ] C
Cent China Normal Univ, Hubei Prov Key Lab Artificial Intelligence & Smart, Wuhan 430079, Hubei, Peoples R China.
语种:
英文
关键词:
Article;controlled study;convolutional neural network;disease association;drug development;drug repositioning;feature learning (machine learning);human;learning;prediction;drug development;Drug Development;Drug Discovery;Drug Repositioning
期刊:
Methods
ISSN:
1046-2023
年:
2023
卷:
218
页码:
48-56
基金类别:
The work is supported by the National Natural Science Foundation of China (No. 61932008 ), the Natural Science Foundation of Hubei Province of China (No. 2022CFB289 ), the Fundamental Research Funds for Central Universities ( KJ02502022-0450 ), and the Scientific Research Center Program of National Language Commission ( ZDI135-135 ). Authors are grateful to the anonymous reviewers for helpful comments.
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
摘要:
Drug repurposing, which typically applies the procedure of drug-disease associations (DDAs) prediction, is a feasible solution to drug discovery. Compared with traditional methods, drug repurposing can reduce the cost and time for drug development and advance the success rate of drug discovery. Although many methods for drug repurposing have been proposed and the obtained results are relatively acceptable, there is still some room for improving the predictive performance, since those methods fail to consider fully the issue of sparseness in known drug-disease associations. In this paper, we pr...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com