版权说明 操作指南
首页 > 成果 > 详情

A Deep Network with Composite Residual Structure for Handwritten Character Recognition

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Rao, Zheheng;Zeng, Chunyan;Zhao, Nan;Liu, Min;Wu, Minghu*;...
通讯作者:
Wu, Minghu
作者机构:
[Zhao, Nan; Rao, Zheheng; Wu, Minghu; Liu, Min; Zeng, Chunyan] Hubei Univ Technol, Hubei Key Lab High Efficiency Utilizat Solar Ener, Wuhan, Hubei, Peoples R China.
[Zhao, Nan; Rao, Zheheng; Wu, Minghu; Liu, Min; Zeng, Chunyan] Hubei Univ Technol, Hubei Collaborat Innovat Ctr High Efficiency Util, Wuhan 430068, Hubei, Peoples R China.
[Wang, Zhifeng] Cent China Normal Univ, Sch Educ Informat Technol, Wuhan 430079, Hubei, Peoples R China.
通讯机构:
[Wu, Minghu] H
Hubei Univ Technol, Hubei Key Lab High Efficiency Utilizat Solar Ener, Wuhan, Hubei, Peoples R China.
Hubei Univ Technol, Hubei Collaborat Innovat Ctr High Efficiency Util, Wuhan 430068, Hubei, Peoples R China.
语种:
英文
关键词:
Clustering algorithms;Composite structures;Hand written character recognition;Hand-written characters;Network parameters;Network structures;Recognition accuracy;Recognition efficiency;Residual structure;Short-cut connection;Character recognition
期刊:
Lecture Notes on Data Engineering and Communications Technologies
ISSN:
2367-4512
年:
2018
卷:
6
页码:
160-166
会议名称:
5th International Conference on Emerging Internetworking, Data and Web Technologies (EIDWT)
会议论文集名称:
Advances in Internetworking, Data & Web Technologies
会议时间:
JUN 10-11, 2017
会议地点:
Wuhan, PEOPLES R CHINA
会议主办单位:
[Rao, Zheheng;Zeng, Chunyan;Zhao, Nan;Liu, Min;Wu, Minghu] Hubei Univ Technol, Hubei Key Lab High Efficiency Utilizat Solar Ener, Wuhan, Hubei, Peoples R China.^[Rao, Zheheng;Zeng, Chunyan;Zhao, Nan;Liu, Min;Wu, Minghu] Hubei Univ Technol, Hubei Collaborat Innovat Ctr High Efficiency Util, Wuhan 430068, Hubei, Peoples R China.^[Wang, Zhifeng] Cent China Normal Univ, Sch Educ Informat Technol, Wuhan 430079, Hubei, Peoples R China.
主编:
Leonard Barolli<&wdkj&>Mingwu Zhang<&wdkj&>Xu An Wang
出版地:
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者:
Springer, Cham
ISBN:
978-3-319-59462-0
基金类别:
This research was supported by National Natural Science Foundation of China (No. 61471162, No. 61501178, No. 61501199, No. 61601177); Program of International science and technology cooperation (2015DFA10940); Science and technology support program (R & D) project of Hubei Province (2015BAA115); PhD Research Startup Foundation of Hubei University of Technology (No. BSQD13037, No. BSQD14028); Open Foundation of Hubei Collaborative Innovation Center for High-Efficiency Utilization of Solar Energy (HBSKFZD2015005, HBSKFTD2016002).
机构署名:
本校为其他机构
院系归属:
教育信息技术学院
摘要:
This paper presents a new deep network (non – very deep network) with composite residual for handwritten character recognition. The main network design is as follows: (1) Introduces an unsupervised FCM clustering algorithm to preprocess the experimental data. (2) By exploiting a composite residual structure the multilevel shortcut connection is proposed which is more suitable for the learning of residual. (3) In order to solve the problem of overfitting and time-consuming for training the network parameters, a dropout layer is added after the ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com