版权说明 操作指南
首页 > 成果 > 详情

AN OPTIMAL BINDING NUMBER CONDITION FOR BIPANCYCLISM

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Hu, Zhiquan;Law, Ka Ho*;Zang, Wenan
通讯作者:
Law, Ka Ho
作者机构:
[Hu, Zhiquan] Cent China Normal Univ, Fac Math & Stat, Wuhan, Peoples R China.
[Law, Ka Ho; Zang, Wenan] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China.
通讯机构:
[Law, Ka Ho] U
Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China.
语种:
英文
关键词:
bipartite graph;Hamiltonian cycle;bipancyclism;binding number;05C38
期刊:
SIAM JOURNAL ON DISCRETE MATHEMATICS
ISSN:
0895-4801
年:
2013
卷:
27
期:
2
页码:
597-618
基金类别:
NSFCNational Natural Science Foundation of China (NSFC) [11071096, 11271149]; Hubei Provincial Department of Education [D20111110]; Research Grants Council of Hong KongHong Kong Research Grants Council
机构署名:
本校为第一机构
院系归属:
数学与统计学学院
摘要:
Let G = (V-1, V-2, E) be a balanced bipartite graph with 2n vertices. The bipartite binding number of G, denoted by B(G), is defined to be n if G = K-n,K-n and min(i is an element of {1,2}) min (empty set not equal S subset of Vi vertical bar N(S)vertical bar < n) vertical bar N(S)vertical bar/vertical bar S vertical bar otherwise. We call G bipancyclic if it contains a cycle of every even length m for 4 = 139, then G is bipancyclic; the bound 3/2 is best possible in the sense that there exist infinitely many balanced bipartite graphs G that have B(G) = 3/2 but are not Hamiltonian.

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com