版权说明 操作指南
首页 > 成果 > 详情

High School Statistical Graph Classification Using Hierarchical Model for Intelligent Mathematics Problem Solving

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Wei, Yantao*;Shi, Yafei;Yao, Huang;Zhao, Gang;Liu, Qingtang
通讯作者:
Wei, Yantao
作者机构:
[Yao, Huang; Wei, Yantao; Shi, Yafei; Liu, Qingtang; Zhao, Gang] Cent China Normal Univ, Sch Educ Informat Technol, Wuhan 430079, Peoples R China.
通讯机构:
[Wei, Yantao] C
Cent China Normal Univ, Sch Educ Informat Technol, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Feedforward neural networks;Hierarchical systems;Learning systems;Network layers;Statistics;Classification accuracy;Extreme learning machine;Hierarchical model;Problem solving systems;Scale invariant feature transforms;Single-hidden layer feedforward neural networks;State-of-the-art methods;Statistical graphs;Problem solving
期刊:
Lecture Notes in Computer Science
ISSN:
0302-9743
年:
2018
卷:
10799
页码:
91-101
会议名称:
8th Pacific Rim Symposium on Image and Video Technology, PSIVT 2017
会议论文集名称:
Image and Video Technology
会议时间:
20 November 2017 through 24 November 2017
会议地点:
Wuhan, PEOPLES R CHINA
会议主办单位:
[Wei, Yantao;Shi, Yafei;Yao, Huang;Zhao, Gang;Liu, Qingtang] Cent China Normal Univ, Sch Educ Informat Technol, Wuhan 430079, Peoples R China.
会议赞助商:
Cent China Normal Univ & Wollongong Univ Joint Inst, Natl Engn Res Ctr E Learning, Wuhan Jingtian Elect Co Ltd, Int Asso Pattern Recognit
主编:
Shin'ichi Satoh
出版地:
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者:
Springer Verlag
ISBN:
9783319927527
基金类别:
Acknowledgments. This work was supported in part by the National Natural Science Foundation of China under Grants 61502195 and 61772012, in part by the National Science & Technology Supporting Program during the Twelfth Five-year Plan Period granted by the Ministry of Science and Technology of China under Grant 2015BAK27B02, in part by the Humanities and Social Science project of Chinese Ministry of Education under Grant 17YJA880104, and in part by the Self-Determined Research Funds of CCNU From the Colleges’ Basic Research and Operation of MOE under Grants CCNU16A05022 and CCNU15A02020.
机构署名:
本校为第一且通讯机构
院系归属:
教育信息技术学院
摘要:
High school statistical graph classification is one of the key steps in intelligent mathematics problem solving system. In this paper, a hierarchial classification method is proposed for high school statistical graph classification. Firstly, the dense Scale-invariant Feature Transform (SIFT) features of the input images are extracted. Secondly, the sparse coding of the SIFT features are obtained. Thirdly, these sparse features are pooled in multiscale. Finally, these pooled features are concatenated and then fed into single-hidden layer feedforward neural network for classification. The effect...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com