版权说明 操作指南
首页 > 成果 > 详情

Local uniqueness of concentrated solutions and some applications on nonlinear Schrödinger equations with very degenerate potentials

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Luo, Peng;Pan, Kefan;Peng, Shuangjie;Zhou, Yang
通讯作者:
Peng Luo
作者机构:
[Luo, Peng; Zhou, Yang; Peng, Shuangjie; Pan, Kefan] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
[Luo, Peng; Peng, Shuangjie] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.
通讯机构:
[Peng Luo] S
School of Mathematics and Statistics and Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan 430079, China
语种:
英文
关键词:
Nonlinear Schr?dinger equation;Non-isolated critical points;Existence and uniqueness;The number of peak solutions
期刊:
Journal of Functional Analysis
ISSN:
0022-1236
年:
2023
卷:
284
期:
12
页码:
109921
基金类别:
Peng Luo and Shuangjie Peng were supported by National Natural Science Foundation of China (No. 11831009 ) and the Fundamental Research Funds for the Central Universities (No. CCNU22LJ002 ). Peng Luo was partially supported by Natural Science Foundation of China (No. 12171183 , No. 11771167 ) and the Fundamental Research Funds for the Central Universities (No. KJ02072020-0319 ).
机构署名:
本校为第一机构
院系归属:
数学与统计学学院
摘要:
We revisit the following nonlinear Schrodinger equation-epsilon 2 Delta u + V(x)u = up-1, u > 0, u is an element of H1(RN), where epsilon > 0 is a small parameter, N >= 2 and 2 < p < 2*.We obtain a more accurate location for the concentrated points, the existence and the local uniqueness for positive k-peak solutions when V(x) possesses non-isolated critical points by using the modified finite dimensional reduction method based on local Pohozaev identities. Moreover, for several special potentials, with its critical point set being a low-dimensional ellipsoid, or a part of hyperboloid of one s...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com