版权说明 操作指南
首页 > 成果 > 详情

Planar Graphs Without Adjacent Cycles of Length at Most Five are (2,0,0)-Colorable

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Xiangwen*;Shen, Qin;Tian, Fanyu
通讯作者:
Li, Xiangwen
作者机构:
[Shen, Qin; Tian, Fanyu; Li, Xiangwen] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
通讯机构:
[Li, Xiangwen] C
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Planar graph;Coloring;Improper coloring;Discharge method
期刊:
Bulletin of the Malaysian Mathematical Sciences Society
ISSN:
0126-6705
年:
2021
卷:
44
期:
3
页码:
1167-1194
基金类别:
Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [11571134]
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学学院
摘要:
A graph G is $$(d_{1},d_{2},\ldots ,d_{k})$$ -colorable if the vertex set of G can be partitioned into subsets $$V_{1}, V_{2},\ldots , V_{k}$$ such that the subgraph $$G[V_{i}]$$ induced by $$V_{i}$$ has maximum degree at most $$d_{i}$$ for $$i = 1, 2, \ldots , k$$ . Novosibirsk’s Conjecture (Sib lektron Mat Izv 3:428–440, 2006) says that every planar graph without 3-cycles adjacent to cycles of length 3 or 5 is 3-colorable. Borodin et al. (Discrete Math 310: 167–173, 2010) as...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com