版权说明 操作指南
首页 > 成果 > 详情

Semi-Supervised Facial Expression Recognition by Exploring False Pseudo-Labels

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Sun, Hao;Pi, Chenchen;Xie, Wei
通讯作者:
Xie, W
作者机构:
[Pi, Chenchen; Xie, W; Xie, Wei; Sun, Hao] Cent China Normal Univ, Hubei Prov Key Lab Artificial Intelligence & Smar, Wuhan, Peoples R China.
[Pi, Chenchen; Xie, W; Xie, Wei; Sun, Hao] Cent China Normal Univ, Sch Comp, Wuhan, Peoples R China.
[Pi, Chenchen; Xie, W; Xie, Wei; Sun, Hao] Cent China Normal Univ, Natl Language Resources Monitoring & Res Ctr Netw, Wuhan, Peoples R China.
通讯机构:
[Xie, W ] C
Cent China Normal Univ, Hubei Prov Key Lab Artificial Intelligence & Smar, Wuhan, Peoples R China.
Cent China Normal Univ, Sch Comp, Wuhan, Peoples R China.
Cent China Normal Univ, Natl Language Resources Monitoring & Res Ctr Netw, Wuhan, Peoples R China.
语种:
英文
关键词:
Facial expression recognition;semi-supervised learning;deep learning;pseudo-labels
期刊:
2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME
ISSN:
1945-7871
年:
2023
页码:
234-239
会议名称:
IEEE International Conference on Multimedia and Expo (ICME)
会议论文集名称:
IEEE International Conference on Multimedia and Expo
会议时间:
JUL 10-14, 2023
会议地点:
Brisbane, AUSTRALIA
会议主办单位:
[Sun, Hao;Pi, Chenchen;Xie, Wei] Cent China Normal Univ, Hubei Prov Key Lab Artificial Intelligence & Smar, Wuhan, Peoples R China.^[Sun, Hao;Pi, Chenchen;Xie, Wei] Cent China Normal Univ, Sch Comp, Wuhan, Peoples R China.^[Sun, Hao;Pi, Chenchen;Xie, Wei] Cent China Normal Univ, Natl Language Resources Monitoring & Res Ctr Netw, Wuhan, Peoples R China.
出版地:
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者:
IEEE
ISBN:
978-1-6654-6891-6
基金类别:
National Natural Science Foundation of China [62201222]; Fundamental Research Funds for the Central Universities [CCNU22QN014, CCNU22XJ034, CCNU22JC007]; National Key Research and Development Program of China [2022YFD1700204]; Collaborative Innovation Center for Informatization and Balanced Development of K-12 Education by MOE [xtzd2021-004]; Hubei Province [xtzd2021-004]
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
摘要:
Pseudo-labels are popular in semi-supervised facial expression recognition. Recent methods usually exploit the confidence as the criterion for pseudo-label generation, and utilize the high-confidence pseudo-labels as the ground-truth for training. However, high confidence cannot guarantee the correctness of pseudo-labels. False pseudo-labels can weaken the feature discrimination and degrade recognition performance. In this paper, we propose a Critical Feature Refinement Network (CFRN) to alleviate the interference of false pseudo-labels on the model performance. Specially, a feature dropout mo...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com