版权说明 操作指南
首页 > 成果 > 详情

Prototype-Based Pseudo-Label Refinement for Semi-Supervised Hyperspectral Image Classification

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Chen, Renyi;Yao, Huaxiong;Chen, Wenjing;Sun, Hao;Xie, Wei;...
通讯作者:
Sun, H;Chen, WJ
作者机构:
[Sun, Hao; Xie, Wei; Chen, Renyi; Yao, Huaxiong] Cent China Normal Univ, Sch Comp Sci, Hubei Prov Key Lab Artificial Intelligence & Smart, Wuhan 430079, Peoples R China.
[Xie, Wei; Chen, Renyi; Yao, Huaxiong; Sun, Hao] Cent China Normal Univ, Natl Language Resources Monitoring & Res Ctr Netwo, Wuhan 430079, Peoples R China.
[Chen, Wenjing] Hubei Univ Technol, Sch Comp Sci, Wuhan 430068, Peoples R China.
[Dong, Le] Xidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China.
[Lu, Xiaoqiang] Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350002, Peoples R China.
通讯机构:
[Chen, WJ ] H
[Sun, H ] C
Cent China Normal Univ, Sch Comp Sci, Hubei Prov Key Lab Artificial Intelligence & Smart, Wuhan 430079, Peoples R China.
Hubei Univ Technol, Sch Comp Sci, Wuhan 430068, Peoples R China.
语种:
英文
关键词:
Feature extraction;Prototypes;Training;Learning systems;Hyperspectral imaging;Sun;Geoscience and remote sensing;Class prototype;hyperspectral image (HSI) classification;pseudo-label (PL);semi-supervised learning
期刊:
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
ISSN:
1545-598X
年:
2024
卷:
21
页码:
1-1
基金类别:
Knowledge Innovation Program of Wuhan-Shuguang Project#&#&#2023010201020377#&#&#2023010201020382 Hubei Provincial Natural Science Foundation of China#&#&#2022CFB954 National Natural Science Foundation of China#&#&#62201222#&#&#62377026
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
摘要:
Pseudo-label (PL) learning-based methods usually regard class confidence above a certain threshold for unlabeled samples as PLs, which may result in PLs still containing wrong labels. In this letter, we propose a prototype-based PL refinement (PPLR) for semi-supervised hyperspectral image (HSI) classification. The proposed PPLR filters wrong labels from PLs using class prototypes, which can improve the discrimination of the network. First, PPLR uses multihead attentions (MHAs) to extract the spectral-spatial features, and designs an adaptive threshold that can be dynamically adjusted to genera...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com