版权说明 操作指南
首页 > 成果 > 详情

Content-based search of earth observation data archives using open-access multitemporal land cover and terrain products

认领
导出
Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Peng, Feifei*;Wang, Le;Zou, Shengyuan;Luo, Jing(罗静);Gong, Shengsheng(龚胜生);...
通讯作者:
Peng, Feifei
作者机构:
[Luo, Jing; Gong, Shengsheng; Peng, Feifei; Li, Xiran] Cent China Normal Univ, Key Lab Geog Proc Anal & Simulat Hubei Prov, Wuhan, Hubei, Peoples R China.
[Luo, Jing; Gong, Shengsheng; Peng, Feifei; Li, Xiran] Cent China Normal Univ, Coll Urban & Environm Sci, Wuhan, Hubei, Peoples R China.
[Zou, Shengyuan; Wang, Le] SUNY Buffalo, Dept Geog, Buffalo, NY 14260 USA.
通讯机构:
[Peng, Feifei] C
Cent China Normal Univ, Key Lab Geog Proc Anal & Simulat Hubei Prov, Wuhan, Hubei, Peoples R China.
语种:
英文
关键词:
Earth observation;Image retrieval;Data archive;Google earth engine;Land cover;Terrain
期刊:
International Journal of Applied Earth Observation and Geoinformation
ISSN:
1569-8432
年:
2019
卷:
81
页码:
13-26
基金类别:
This work was supported by the National Natural Science Foundation of China ( 41701511 and 41871176 ), the Hubei Provincial Natural Science Foundation of China ( 2017CFB278 ), the Fundamental Research Funds for the Central Universities ( CCNU19QN048, CCNU19QN047, and CCNU19TD002 ), and the Key Laboratory for National Geographic State Monitoring of National Administration of Surveying, Mapping and Geoinformation ( 2018NGCMZD03 ). Special thanks are extended to Google for provision of the GEE platform, USGS for provision of NLCD products, JAXA Earth Observation Research Center for provision of the AW3D30, and Pawel Netzel et al. for provision of the GeoWeb application of LandEx. The authors would like to thank the anonymous reviewers for their very constructive comments.
机构署名:
本校为第一且通讯机构
院系归属:
城市与环境科学学院
摘要:
Public Earth Observation (EO) data archives, e.g., MODIS, Landsat, and Sentinels, are valuable sources of information for a broad range of applications. For decision-supporting applications used in urban planning, land management, and sustainable development, images covering regions similar to the study area are prerequisites for high-accuracy decision making. These desirable images cannot be quickly searched for in the EO data archives via image metadata alone but can be obtained through content-based image retrieval methods. Land cover (LC) information, traditionally obtained through image s...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com