版权说明 操作指南
首页 > 成果 > 详情

Applying Recurrent Neural Network for Passenger Traffic Forecasting

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Zhengbing Hu;Ivan Dychka;Liubov Oleshchenko;Sergiy Kukharyev
通讯作者:
Oleshchenko, L.
作者机构:
[Hu Z.] School of Educational Information Technology, Central China Normal University, Wuhan, China
[Kukharyev S.; Oleshchenko L.; Dychka I.] National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
通讯机构:
[Oleshchenko, L.] N
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”Ukraine
语种:
英文
关键词:
Forecasting;Long Short-Term Memory;Motor transport enterprises;Neural network;Non-stationary time series;Passenger traffic;Recurrent neural networks
期刊:
Advances in Intelligent Systems and Computing
ISSN:
2194-5357
年:
2020
卷:
938
页码:
68-77
会议名称:
2nd International Conference on Computer Science, Engineering and Education Applications, ICCSEEA 2019
会议时间:
26 January 2019 through 27 January 2019
主编:
Dychka I.Hu Z.He M.Petoukhov S.
出版者:
Springer Verlag
ISBN:
9783030166205
机构署名:
本校为第一机构
院系归属:
教育信息技术学院
摘要:
The article represents the analysis of neural networks that can be used to predict passenger traffic between cities. Passenger data nonstationary timetable is considered. A class of recurrent neural networks (RNN) have also been considered, among which the expediency of using the Long Short-Term Memory (LSTM) neural network for analysis and prediction of passenger traffic on the interurban route investigated is selected and substantiated. The stages of the research are represented. The data of the Ukrainian motor transport enterprise for 2007–...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com