版权说明 操作指南
首页 > 成果 > 详情

On Ambrosetti-Malchiodi-Ni conjecture on two-dimensional smooth bounded domains

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wei, Suting;Xu, Bin;Yang, Jun*
通讯作者:
Yang, Jun
作者机构:
[Yang, Jun; Wei, Suting] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.
[Xu, Bin] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China.
[Yang, Jun] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China.
通讯机构:
[Yang, Jun] C
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.
Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China.
语种:
英文
关键词:
35J25;35J61
期刊:
Calculus of Variations and Partial Differential Equations
ISSN:
0944-2669
年:
2018
卷:
57
期:
3
页码:
1-45
基金类别:
Acknowledgements J. Yang is supported by NSFC(No.11371254 and No.11671144). S. Wei is supported by the State Scholarship Fund from China Scholarship Council (No.201706770023). Part of this work was done when the authors visited Chern Institute of Mathematics, Nankai University in summer of 2014: J. Yang and B. Xu are very grateful to the institution for the kind hospitality. We also extend our gratitude to the referee for the useful comments to improve the presentation.
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学学院
摘要:
We consider the problem $$\begin{aligned} \epsilon ^2 \Delta u-V(y)u+u^p\,=\,0,\quad u>0\quad \text{ in }\quad \Omega , \quad \frac{\partial u}{\partial \nu }\,=\,0\quad \text{ on }\quad \partial \Omega , \end{aligned}$$ where $$\Omega $$ is a bounded domain in $${\mathbb {R}}^2$$ with smooth boundary, the exponent p is greater than 1, $$\epsilon >0$$ is a small parameter, V is a uniformly positive, smooth potential on $$\bar{\Omega }$$ , and $$\nu $$ deno...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com