版权说明 操作指南
首页 > 成果 > 详情

Effectively Incorporating Knowledge in Open-Domain Dialogue Generation

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Zhou W.;He T.;Zhang M.;Fan R.
通讯作者:
He, T.
作者机构:
Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei, 430079, China
School of Computer, Central China Normal University, Wuhan, Hubei, 430079, China
National Engineering Research Center for E-Learning, Central China Normal University, Wuhan, Hubei, 430079, China
National Language Resources Monitor and Research Center for Network Media, Central China Normal University, Wuhan, Hubei, 430079, China
[Zhang M.] Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei, 430079, China, National Engineering Research Center for E-Learning, Central China Normal University, Wuhan, Hubei, 430079, China, National Language Resources Monitor and Research Center for Network Media, Central China Normal University, Wuhan, Hubei, 430079, China
通讯机构:
[He, T.] H
Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, China
语种:
英文
关键词:
Deep learning;Dialogue generation;External knowledge
期刊:
Communications in Computer and Information Science
ISSN:
1865-0929
年:
2021
卷:
1356 CCIS
页码:
237-249
会议名称:
5th China Conference on Knowledge Graph, and Semantic Computing, CCKS 2020
会议时间:
12 November 2020 through 15 November 2020
主编:
Chen H.Liu K.Sun Y.Wang S.Hou L.
出版者:
Springer Science and Business Media Deutschland GmbH
ISBN:
9789811619632
基金类别:
Acknowledgments. This research is supported by the National Natural Science Foundation of China (61532008, 61932008, 61572223), the Key Research and Development Program of Hubei Province (2020BAB017), Wuhan Science and Technology Program (2019010701011392), Scientific Research Center Program of National Language Commission (ZDI135-135) and the National Key Research and Development Program of China (2017YFC0909502).
机构署名:
本校为第一机构
院系归属:
计算机学院
国家数字化学习工程技术研究中心
摘要:
Dialogue generation is one of the most important parts in the dialogue system. Generating useful and informative responses in conversation has become a research hotspot. Previous work has proved that incorporating external knowledge is conducive to generating meaningful responses. But how to make full use of the existing information to select the most appropriate knowledge is a current research difficulty. In this paper, we propose a dialogue generation model with a lightweight knowledge routing module to sample knowledge needed for the convers...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com