版权说明 操作指南
首页 > 成果 > 详情

Positive solutions for the Hardy–Sobolev–Maz'ya equation with Neumann boundary condition

认领
导出
Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yang, Jing*
通讯作者:
Yang, Jing
作者机构:
[Yang, Jing; Yang, J] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
通讯机构:
[Yang, Jing] C
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
语种:
英文
关键词:
Hardy-Sobolev-Maz'ya inequality;Mountain Pass Lemma;Positive solutions
期刊:
Journal of Mathematical Analysis and Applications
ISSN:
0022-247X
年:
2015
卷:
421
期:
2
页码:
1889-1916
基金类别:
The author sincerely thanks Professor S. Peng for helpful discussions and suggestions. This work was partially supported by NSFC (No. 11301204 ; No. 11371159 ; No. 11101171 ), the PhD specialized grant of the Ministry of Education of China ( 20110144110001 ), the excellent doctorial dissertation cultivation grant from Central China Normal University ( 2013YBZD15 ).
机构署名:
本校为第一且通讯机构
院系归属:
数学与统计学学院
摘要:
Let Omega be a bounded domain with a smooth C-2 boundary in R-N = R-k x RN-k (N >= 3), 0 is an element of partial derivative Omega, and v denotes the unit outward normal vector to boundary as partial derivative Omega. We are concerned with the Neumann boundary problem: -Delta u-mu(vertical bar y vertical bar 2)/(u) = (vertical bar y vertical bar t)/(vertical bar u vertical bar Pt-1u) + f(x,u), u > 0, x is an element of Omega, partial derivative v/partial derivative u + alpha(x)u = 0, x is an element of partial derivative Omega \ {0}. Using the Mountain Pass Lemma without (PS) condition and the...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com