版权说明 操作指南
首页 > 成果 > 详情

Identifying top Chinese network buzzwords from social media big data set based on time-distribution features

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Tang, Yongli*;He, Tingting(何婷婷);Li, Bo;Hu, Xiaohua
通讯作者:
Tang, Yongli
作者机构:
[He, Tingting; Li, Bo; Tang, Yongli] Cent China Normal Univ, Sch Comp, Wuhan, Peoples R China.
[Hu, Xiaohua] Drexel Univ, Coll Informat Sci & Technol, Philadelphia, PA 19104 USA.
通讯机构:
[Tang, Yongli] C
Cent China Normal Univ, Sch Comp, Wuhan, Peoples R China.
语种:
英文
关键词:
buzzword;time-distribution;language model;KL divergence
期刊:
2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA)
ISSN:
2639-1589
年:
2014
页码:
924-931
会议名称:
2014 IEEE International Conference on Big Data (Big Data)
会议论文集名称:
2014 IEEE International Conference on Big Data (Big Data)
会议时间:
October 2014
会议地点:
Washington, DC, USA
会议主办单位:
[Tang, Yongli;He, Tingting;Li, Bo] Cent China Normal Univ, Sch Comp, Wuhan, Peoples R China.^[Hu, Xiaohua] Drexel Univ, Coll Informat Sci & Technol, Philadelphia, PA 19104 USA.
会议赞助商:
IEEE, IEEE Comp Soc, ELSEVIER, Natl Sci Fdn, CISCO, CCF
主编:
Lin, J Hu, XH Chang, W Nambiar, R Aggarwal, C Cercone, N Honavar, V Huan, J Mobasher, B Pyne, S
出版地:
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者:
IEEE
机构署名:
本校为第一且通讯机构
院系归属:
计算机学院
摘要:
Buzzwords are the main embodiment of Internet culture, which play an important role in public opinion analysis, social focus tracking and language evolution study. At present, questionnaire has been wildly used as a standard method to obtain network buzzwords, which is subjective and costly. In this paper, we will propose a novel algorithm relying on the time-distribution feature of words and a KL-divergence measure to estimate words' popularity so as to figure out buzzwords in a specific period. The time-distribution feature simply states the fact that buzzwords' usage has a sharp increase du...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com