版权说明 操作指南
首页 > 成果 > 详情

Optimal Spectral Schemes Based on Generalized Prolate Spheroidal Wave Functions of Order-1

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhang, Jing;Wang, Li-Lian*;Li, Huiyuan;Zhang, Zhimin
通讯作者:
Wang, Li-Lian
作者机构:
[Zhang, Jing] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
[Zhang, Jing] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.
[Wang, Li-Lian] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore.
[Li, Huiyuan] Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Lab Parallel Comp, Beijing 100190, Peoples R China.
[Zhang, Zhimin] Beijing Computat Sci & Res Ctr, Beijing 100193, Peoples R China.
通讯机构:
[Wang, Li-Lian] N
Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore.
语种:
英文
关键词:
Boundary value problems;Eigenvalues and eigenfunctions;Error analysis;Helmholtz equation;Bandwidth parameters;Eigenvalue problem;Helmholtz problems;Homogeneous boundary condition;Optimal spectral schemes;Oscillatory solutions;Prolate spheroidal wave functions;Second-order boundary value problems;Wave functions
期刊:
Journal of Scientific Computing
ISSN:
0885-7474
年:
2017
卷:
70
期:
2
页码:
451-477
基金类别:
Zhimin Zhang: The research of this author is supported in part by the National Natural Science Foundation of China (11471031 and 91430216), and the U.S. National Science Foundation (DMS-1419040). The first author would like to thank the supports from both Beijing Computational Sciences and Research Center, Beijing, China and Division of Mathematical Sciences of Nanyang Technological University, Singapore. Huiyuan Li: The research of this author is partially supported by the National Natural Science Foundation of China (91130014, 11471312 and 91430216). Jing Zhang: The work of this author is partially supported by the National Natural Science Foundation of China (11201166), and the Fundamental Research Funds for the Central Universities (CCNU15A02033).
机构署名:
本校为第一机构
院系归属:
数学与统计学学院
摘要:
We introduce a family of generalized prolate spheroidal wave functions (PSWFs) of order $$-1,$$ and develop new spectral schemes for second-order boundary value problems. Our technique differs from the differentiation approach based on PSWFs of order zero in Kong and Rokhlin (Appl Comput Harmon Anal 33(2):226–260,2012); in particular, our orthogonal basis can naturally include homogeneous boundary conditions without the re-orthogonalization of Kong and Rokhlin (2012). More notably, it leads to diagonal systems or direct “explic...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com