版权说明 操作指南
首页 > 成果 > 详情

Multi-scale deep convolutional nets with attention model and conditional random fields for semantic image segmentation

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Ming Liu(刘明);Caiming Zhang;Zhao Zhang
作者机构:
[Ming Liu; Caiming Zhang; Zhao Zhang] School of Computer, Central China Normal University, Wuhan, China
语种:
英文
关键词:
Convolution;Deep neural networks;Image segmentation;Machine learning;Multilayer neural networks;Random processes;Semantics;Attention model;Conditional random field;End to end;Feature resolution;Localization accuracy;Multiple scale;Semantic image segmentations;Visual model;Convolutional neural networks
期刊:
ACM International Conference Proceeding Series
年:
2019
页码:
73-78
会议论文集名称:
SPML '19: Proceedings of the 2019 2nd International Conference on Signal Processing and Machine Learning
出版地:
New York, NY, United States
出版者:
Association for Computing Machinery
ISBN:
9781450372213
机构署名:
本校为第一机构
院系归属:
计算机学院
摘要:
Although Convolutional Neural Networks are effective visual models that generate hierarchies of features, there still exist some shortcomings in the application of Deep Convolutional Neural Networks to semantic image segmentation. In this work, our algorithm incorporates multi-scale atrous convolution, attention model and Conditional Random Fields to tackle this problem. Firstly, our method replaces deconvolutional layers with atrous convolutional layers to avoid reducing feature resolution when the Deep Convolutional Neural Networks is employe...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com