作者机构:
[Nie Yan; Yu Lei; Yi Jun; Zhang Tao; Zhou Yong] Cent China Normal Univ, Hubei Prov Key Lab Anal & Simulat Geog Proc, Wuhan 430079, Hubei, Peoples R China.;[Nie Yan; Yu Lei; Yi Jun; Zhang Tao; Zhou Yong] Cent China Normal Univ, Coll Urban & Environm Sci, Wuhan 430079, Hubei, Peoples R China.;[Nie Yan; Yu Lei; Yi Jun; Zhang Tao; Zhou Yong] Cent China Normal Univ, Res Inst Sustainable Dev, Wuhan 430079, Hubei, Peoples R China.
通讯机构:
[Yu Lei] C;Cent China Normal Univ, Hubei Prov Key Lab Anal & Simulat Geog Proc, Wuhan 430079, Hubei, Peoples R China.;Cent China Normal Univ, Coll Urban & Environm Sci, Wuhan 430079, Hubei, Peoples R China.;Cent China Normal Univ, Res Inst Sustainable Dev, Wuhan 430079, Hubei, Peoples R China.
关键词:
土壤高光谱;小波系数;小波能量特征;土壤有机质;水稻土
摘要:
土壤高光谱在采集过程中难以避免噪声干扰, 造成高光谱数据信噪比较低, 影响土壤有机质含量估测精度。 尝试探究小波能量特征方法, 降低高光谱噪声, 提升土壤有机质含量高光谱估测模型性能。 选取湖北省潜江市运粮湖管理区为试验区, 于2016年9月采集80份深度为0~20 cm的水稻土样本; 土壤样本经风干、 碾磨、 过筛等一系列处理后, 在实验室内采集样本光谱, 并通过重铬酸钾-外加热法测定土壤有机质含量; 利用浓度梯度法, 将总体样本集(80个样本)划分为建模集(54个样本)和验证集(26个样本); 以mexh为小波基函数进行连续小波变换(continuous wavelet transformation), 将土壤高光谱转换为10个分解尺度的小波系数(wavelet coefficients); 逐尺度计算小波系数的均方根作为小波能量特征(energy features), 将10个尺度的小波能量特征组成小波能量特征向量(energy features vector); 逐尺度逐波长计算小波系数与有机质含量的相关系数, 将达到极显著水平(p<0.01)的小波系数作为敏感小波系数(sensitive wavelet coefficients); 利用主成分分析法(principal component analysis)分别计算土壤高光谱和小波能量特征向量的各主成分载荷, 通过比较两者第一主成分贡献率的高低和两者前三个主成分得分的空间离散程度, 判断小波能量特征转换前后建模自变量的主成分信息变化趋势; 基于小波能量特征向量和敏感小波系数分别建立多元线性回归和偏最小二乘回归土壤有机质含量估测模型。 结果表明, 土壤有机质含量越高, 全波段反射率越低, 但不同土样的光谱反射率曲线特征相似, 近红外部分的反射率(780~2 400 nm)高于可见光部分(400~780 nm); 敏感小波系数对应的波长为494, 508, 672, 752, 1 838和2 302 nm; 土壤高光谱与小波能量特征向量的第一主成分贡献率分别为96.28%和99.13%, 小波能量特征向量的前三个主成分散点较土壤高光谱的主成分散点在空间上更为聚集, 表明小波能量特征方法有效减少了噪声影响; 比较全部土壤有机质含量估测模型, 以小波能量特征向量为自变量的多元线性回归模型具有最佳估测精度, 其验证集决定系数(R2)、 相对估测误差(RPD)和均方根误差(RMSE)分别为0.77, 1.82和0.82。 因此, 小波能量特征方法既能够提高数据的信噪比, 提升土壤有机质含量的估测精度, 又实现了土壤高光谱数据降维, 降低了模型复杂度, 可用于土壤有机质含量快速测定和土壤肥力动态监测等研究。 There is no silver-bullet solution of eliminating noise during the acquisition process of soil hyperspectral. As the noise interference, the observations of soil spectra are in low signal-to-noise ratio, which affects the estimation accuracy of soil organic matter content. This paper attempts to adopt the wavelet energy features method to reduce the noise in soil hyperspectral and improve the estimation accuracy of soil organic matter content. The Yunlianghu Farm of Qianjiang City, Hubei Province, located in the hinterland of Jianghan Plain, was selected as the experimental area, and 80 samples of paddy soil with a depth of 0~20 cm were collectedin September 2016. After pretreatment (air drying, milling, sieving), soil sample spectral reflectance and determine soil organic matter contentwere collected in the laboratory. The concentration gradient method was employed to divide the whole sample set (80 samples) into a calibration set (54 samples) and a validation set (26 samples). Continuous wavelet transformation was performed using mexh as a wavelet basis function, transforming the soil hyperspectral into sensitive wavelet coefficients of 10 decomposition scales. Then the root mean square of the wavelet coefficients was calculated scale by scaleto define wavelet energy features, and the wavelet energy features vector was determined by the wavelet energy features. The correlation coefficients between the wavelet coefficients and the organic matter content were calculated scale by scale and wavelength by wavelength, and the wavelet coefficient which reaches the extremely significant level (p<0.01) was defined as the sensitive wavelet coefficients. Principal component analysis was conducted to calculate the principal component loads of soil hyperspectral and wavelet energy features vector, respectively. The trend of principal component information of modeled independent variables before and after wavelet energy features transformation would be judged from the difference between the first principal component contribution rate and the spatial dispersion of the first three principal component scores degree. Moreover, regression models were established based on wavelet energy features vector and sensitive wavelet coefficients, respectively, to estimate soil organic matter content. The results showed that with the increase of soil organic matter content, the full-band reflectance decreased, but the spectral reflectance curves of different soil samples were similar, and the reflectance in the near-infrared bands (780~2 400 nm) was higher than that in the visible bands (400~780 nm). The sensitive wavelet coefficients corresponded to wavelengths of 494, 508, 672, 752, 1 838, and 2 302 nm. The first principal component contribution rates of soil hyperspectral and wavelet energy features vector were 96.28% and 99.13%, respectively. The first three principal component scatter points of wavelet energy features vector were more spatially aggregated than those of soil hyperspectral, which demonstrated that the wavelet energy features method effectively reduces the influence of noise. Comparing the estimation models of soil organic matter content, the multivariate linear regression model adopting wavelet energy features vector as the independent variable had the highest estimation accuracy, whose determination coefficients (R2), relative estimate deviation (RPD), and the root mean squared error (RMSE) of validation set were 0.77, 1.82, and 0.82, respectively. Therefore, the wavelet energy features method which is proved to raise the signal-to-noise ratio of the data without adding to the complexity, could improve the estimation accuracy of soil organic matter and realize the dimensional reduction of soil hyperspectral data. This method can be applied to studies like on-the-go soil properties measurement and soil quality monitoring.
作者机构:
[于雷; 章涛; 朱亚星; 周勇; 夏天; 聂艳] Hubei Provincial Key Laboratory for the Analysis and Simulation of Geographical Process, Central China Normal University, Wuhan;430079, China;College of Urban and Environmental Science, Central China Normal University, Wuhan;Research Institute for Sustainable Development of CCNU, Wuhan;[于雷; 章涛; 朱亚星; 周勇; 夏天; 聂艳] 430079, China <&wdkj&> College of Urban and Environmental Science, Central China Normal University, Wuhan
关键词:
光谱分析;作物;叶绿素;高光谱;特征波长变量;迭代和保留信息变量法;大豆
摘要:
在植物叶绿素特征波长变量筛选过程中,与叶绿素关系较弱的波长变量极易被忽略,导致这些弱信息变量包含叶绿素的有效信息丢失,因此,确定叶片光谱中弱信息变量对揭示叶绿素高光谱响应规律具有重要意义。该研究以江汉平原大豆鼓粒期的叶片为研究对象,采集80组大豆叶片高光谱和SPAD(soil and plant analyzer development)值,分析SPAD值与大豆叶片反射率相关关系和光谱波长变量自相关关系,基于迭代和保留信息变量法(iteratively retains informative variables,IRIV)筛选大豆叶片的特征波长变量,建立偏最小二乘回归(partial least squares regression,PLSR)和支持向量机(support vector machine,SVM)模型估测SPAD值。结果表明,大豆叶片SPAD值与光谱反射率在可见光波段具有极显著负相关,在近红外波段存在不显著的正相关性(P>0.01);可见光、近红外2波段的波长变量之间相关性较弱,但2波段内变量之间的相关性较强;基于IRIV算法确定了大豆叶绿素的特征波长变量,利用特征波长变量建立的估测模型的估测能力高于仅利用强信息波长变量建立的估测模型,表明弱信息变量对估测叶片SPAD值具有重要意义; IRIV-SVM模型估测能力最优,验证集R~2和相对分析误差(RPD)分别为0.73、1.82。该文尝试证明了光谱中弱信息变量的重要性,为揭示叶片高光谱响应机理提供了理论依据。
摘要:
以湖北省为研究区域,选取9个影响粮食产量因素指标,通过对自变量之间的多重共线性进行分析诊断,构建了基于C-D生产函数的2000~2014年湖北省粮食产量影响因素的偏最小二乘回归(Partial least squares regression,PLSR)模型.PLSR模型中,自变量对因变量均具有较好的解释能力,回归模型的Rcv2=0.946,表明回归模型的精度较高,拟合效果较好,可靠性强.结果表明,粮食作物播种面积、农业机械化总动力、农田有效灌溉面积、农用化肥施用量以及农村用电量共5个指标是影响湖北省粮食产量的关键因素.
摘要:
【目的】快速、准确地监测土壤有机质对于精准农业的发展具有重要意义。可见光-近红外(visible and near-infrared,Vis-NIR)光谱技术在土壤属性估算、数字化土壤制图等方面应用较为广泛,然而,在田间进行光谱测量,易受土壤含水量(soil moisture,SM)、温度、土壤表面状况等因素的影响,导致光谱信息中包含大量干扰信息,其中,SM变化是影响光谱观测结果最为显著的因素之一。此研究的目的是探讨OSC算法消除其影响,提升Vis-NIR光谱定量估算土壤有机质(soil organic matter,SOM)的精度。【方法】以江汉平原公安县和潜江市为研究区域,采集217份耕层(0-20 cm)土壤样本,进行风干、研磨、过筛等处理,采用重铬酸钾-外加热法测定SOM;将总体样本划分为3个互不重叠的样本集:建模集S~0(122个样本)、训练集S~1(60个样本)、验证集S~2(35个样本);设计SM梯度试验(梯度间隔为4%),在实验室内获取S~1和S~2样本集的9个梯度SM(0%-32%)的土壤光谱数据;分析SM对土壤Vis-NIR光谱反射率的影响,采用外部参数正交化算法(external parameter orthogonalization,EPO)、正交信号校正算法(orthogonal signal correction,OSC)消除SM对土壤光谱的干扰;利用主成分分析(principal component analysis,PCA)的前两个主成分得分和光谱相关系数两种方法检验消除SM干扰前、后的效果;基于偏最小二乘回归(partial least squares regression,PLSR)方法建立EPO和OSC处理前、后的SOM估算模型,利用决定系数(coefficient of determination,R~2)、均方根误差(root mean square error,RMSE)和RPD(the ratio of prediction to deviation)3个指标比较PLSR、EPO-PLSR、OSC-PLSR模型的性能。【结果】土壤Vis-NIR光谱受SM的影响十分明显,随着SM的增加,土壤光谱反射率呈非线性降低趋势。OSC处理前的湿土光谱数据主成分得分散点相对分散,与干土光谱数据主成分得分空间的位置不重叠,不同SM梯度之间的光谱相关系数变化较大;OSC处理后的湿土光谱数据主成分得分空间的位置基本与干土光谱数据相重合,各样本光谱数据之间相似性很高,不同SM梯度之间的光谱相关系数变化较小。9个SM梯度的EPO-PLSR模型的验证平均R_(pre)~2、RPD分别为0.69、1.7。9个SM梯度的OSC-PLSR模型的验证平均R_(pre)~2、RPD分别为0.72、1.89,校正后的OSC-PLSR模型受SM的较小,有效提升SOM估算模型的精度和鲁棒性。【结论】OSC能够消除SM变化对土壤Vis-NIR光谱的影响,可为将来田间原位实时监测SOM信息提供一定的理论支撑。
作者机构:
[于雷; 洪永胜; 周勇; 朱强; 李冀云; 聂艳] Key Laboratory for Geographical Process Analysis & Simulation, Hubei Province, Central China Normal University, Wuhan;430079, China;College of Urban & Environmental Science, Central China Normal University, Wuhan;[徐良] Hubei Institute of Economic and Social Development, Central China Normal University, Wuhan;[于雷; 洪永胜; 周勇; 朱强; 李冀云; 聂艳] 430079, China <&wdkj&> College of Urban & Environmental Science, Central China Normal University, Wuhan