作者机构:
[Xu, Huan; Qi, Chao; Liu, Jinlin; Ke, Wei; Gao, Lulu; Zhang, Li; Zhao, Fan; Chen, Jie; Yang, Jihong] Cent China Normal Univ, Coll Life Sci, Hubei Key Lab Genet Regulat & Integrat Biol, Wuhan 430079, Hubei, Peoples R China.
通讯机构:
[Qi, C; Liu, JL] C;Cent China Normal Univ, Coll Life Sci, Hubei Key Lab Genet Regulat & Integrat Biol, Wuhan 430079, Hubei, Peoples R China.
关键词:
Actinobacillus pleuropneumoniae;Sulfate-binding protein Sbp;Sulfur acquisition;Virulence
摘要:
Actinobacillus pleuropneumoniae is a Gram-negative pathogen that causes porcine pleuropneumonia, an infectious disease responsible for significant losses in the pig industry. Sulfur is an essential nutrient that is widely required by microorganisms; however, the mechanism involved in A. pleuropneumoniae sulfur transport is unknown. In this study, we showed that a periplasmic protein predicted to be involved in sulfur acquisition (sulfate-binding protein (Sbp)), is required for A. pleuropneumoniae growth in chemically defined medium (CDM) containing sulfate or methionine as the sole sulfur sources. However, utilization of glutathione and cysteine was not affected in the sbp-deletion mutant. The virulence of A. pleuropneumoniae in mice was not affected by the absence of Sbp. Moreover, we demonstrated that Sbp was not essential for the in vivo colonization of A. pleuropneumoniae in mice or pigs. Collectively, these findings reveal that A. pleuropneumoniae Sbp plays an important role in the acquisition of the sulfur nutrients, sulfate and methionine. The presence of other sulfur uptake systems suggests A. pleuropneumoniae has multiple functionally redundant pathways ensuring uptake of important nutrients during infection.
作者机构:
[Qi, Chao; Liu, Jinlin; Cao, Yurou; Zhao, Jin; Zhou, Lixiang; Gao, Lulu; Zhang, Li; Deng, Lingfu; Yang, Jihong] Cent China Normal Univ, Coll Life Sci, Hubei Key Lab Genet Regulat & Integrat Biol, Wuhan 430079, Hubei, Peoples R China.
通讯机构:
[Qi, C; Liu, JL] C;Cent China Normal Univ, Coll Life Sci, Hubei Key Lab Genet Regulat & Integrat Biol, Wuhan 430079, Hubei, Peoples R China.
摘要:
Actinobacillus pleuropneumoniae is an important veterinary pathogen that causes porcine pleuropneumonia. Lipoproteins of bacterial pathogens play pleiotropic roles in the infection process. In addition, many bacterial lipoproteins are antigenic and immunoprotective. Therefore, characterization of lipoproteins is a promising strategy for identification of novel vaccine candidates or diagnostic markers. We cloned 58 lipoproteins from A. pleuropneumoniae JL03 (serovar 3) and expressed them in Escherichia coli. Five proteins with strong positive signals in western blotting analysis were used to immunize mice. These proteins elicited significant antibody responses, and three of them (APJL_0922, APJL_1380 and APJL_1976) generated efficient immunoprotection in mice against lethal heterologous challenge with A. pleuropneumoniae 4074 (serovar 1), both in the active and passive immunization assays. Then immunogenicity of these three lipoproteins (APJL_0922, APJL_1380 and APJL_1976) were further tested in pigs. Results showed that these proteins elicited considerable humoral immune responses and effective protective immunity against virulent A. pleuropneumoniae challenge. Our findings suggest that these three novel lipoproteins could be potential subunit vaccine candidates.
期刊:
General and Comparative Endocrinology,2019年277:30-37 ISSN:0016-6480
通讯作者:
Zhao, Haobin
作者机构:
[Zhang, Runshuai; Wu, Kongyue; Shen, Hao; Al Hafiz, Abdullah; Xu, Gongyu; Wang, Zequn; Nibona, Emile; Ke, Xiaomei; Qi, Chao; Zhao, Haobin] Cent China Normal Univ, Sch Life Sci, Hubei Key Lab Genet Regulat & Integrat Biol, Wuhan 430079, Hubei, Peoples R China.
通讯机构:
[Zhao, Haobin] C;Cent China Normal Univ, Sch Life Sci, Hubei Key Lab Genet Regulat & Integrat Biol, Wuhan 430079, Hubei, Peoples R China.
会议名称:
1st International Symposium of Chinese Comparative Endocrinologists (ISOCCE) held jointly with 12th Academic Conference of Chinese-Society-for-Comparative-Endocrinology
会议时间:
JUN 30-JUL 03, 2018
会议地点:
Shanghai Ocean Univ, Shanghai, PEOPLES R CHINA
作者机构:
[Shen, Hao; Wu, Kongyue; Xu, Gongyu; Nibona, Emile; Al Hafiz, Md. Abdullah; Ke, Xiaomei; Qi, Chao; Liang, Xiaoting; Zhou, Qingchun; Zhao, Haobin; Zhong, Xueping] Cent China Normal Univ, Sch Life Sci, Hubei Key Lab Genet Regulat & Integrat Biol, Wuhan 430079, Hubei, Peoples R China.
通讯机构:
[Zhao, Haobin] C;Cent China Normal Univ, Sch Life Sci, Hubei Key Lab Genet Regulat & Integrat Biol, Wuhan 430079, Hubei, Peoples R China.
摘要:
FUN14 domain-containing protein 1 (FUNDC1) is a mitochondrial outer membrane protein which is responsible for hypoxia-induced mitophagy in mammalian cells. Knockdown of fundc1 is known to cause severe defects in the body axis of a rare minnow. To understand the role of Fundc1 in embryogenesis, we used zebrafish in this study. We used bioimaging to locate zebrafish Fundc1 (DrFundc1) with MitoTracker, a marker of mitochondria, and/or CellLight Lysosomes-GFP, a label of lysosomes, in the transfected ovary cells of grass carp. The use of Western blotting detected DrFundc1 as a component of mitochondrial proteins with endogenous COX IV, LC3B, and FUNDC1 in transgenic human embryonic kidney 293 T cells. DrFundc1 induced LC3B activation. The ectopic expression of Drfundc1 caused cell death and apoptosis as well as impairing cell proliferation in the 293 T cell line, as detected by Trypan blue, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and incorporation of BrdU. DrFundc1 up-regulated expression of both autophagy- and apoptosis-related genes, including ATG5, ATG7, LC3B, BECLIN1, and BAX in transgenic 293 T cells. A knockdown of Drfundc1 using short hairpin RNA (shRNA) led to midline bifurcation with two notochords and two spinal cords in zebrafish embryos. Co-injection of Drfundc1 mRNA repaired defects resulting from shRNA. Knockdown of Drfundc1 resulted in up- or down-regulation of genes related to autophagy and apoptosis, as well as decreased expression of neural genes such as cyclinD1, pax2a, opl, and neuroD1. In summary, DrFundc1 is a mitochondrial protein which is involved in mitophagy and is critical for typical body axis development in zebrafish.
摘要:
B-cell lymphoma-6 (Bcl6) is a transcriptional repressor that plays important roles in various physiological activities such as innate and adaptive immune response, lymphocyte differentiation, and cell cycle regulation in mammals. Two homologs of Bcl6a, namely Bcl6aa and Bcl6ab, are identified in teleost fish including medaka Oryzias latipes. The expression profiles of bcl6aa and bcl6ab in medaka were studied using reverse-transcription polymerase chain reaction and in situ hybridization. The transcripts of bcl6aa and bcl6ab were detected from very early embryos such as the four-cell stage until hatching. Bcl6aa and bcl6ab were clearly detected in the embryonic body from 5 days postfertilization onward by in situ hybridization. Bcl6aa was specifically expressed in the retina, whereas bcl6ab was expressed in entire embryonic body. The results referred to that both bcl6aa and bcl6ab originate maternally in the zygotes and may play major roles in embryogenesis of medaka. The transcripts of bcl6aa and bcl6ab were detected in all examined adult tissues, including immune organs such as the gill, spleen, kidney, liver, and intestine. The expression of bcl6aa and bcl6ab in the liver, spleen, head-kidney, and intestine could be upregulated or downregulated by lipopolysaccharide and polyriboinosinic-polyribocytidylic acid. These results indicate that both bcl6aa and bcl6ab may be involved in immune response in medaka.
期刊:
PROTEIN JOURNAL,2018年37(6):531-538 ISSN:1572-3887
通讯作者:
Liu, Yanli
作者机构:
[Liu, Jinlin; Liang, Xiao; Yang, Xiajie; Gong, Siying; Li, Fangzhou; Qi, Chao; Lei, Ming; Liu, Ke; Li, Bing; Liu, Yanli; Zhou, Mengqi] Cent China Normal Univ, Hubei Key Lab Genet Regulat & Integrat Biol, Sch Life Sci, Wuhan 430079, Hubei, Peoples R China.;[Cao, Yu] Cent China Normal Univ, Key Lab Pesticide & Chem Biol, Minist Educ, Coll Chem, Wuhan 430079, Hubei, Peoples R China.
通讯机构:
[Liu, Yanli] C;Cent China Normal Univ, Hubei Key Lab Genet Regulat & Integrat Biol, Sch Life Sci, Wuhan 430079, Hubei, Peoples R China.
关键词:
AL protein;PHD domain;Histone binding
摘要:
Alfin1-like (AL) is a family of proteins homologous to the alfalfa Alfin1 in plant and bears an Alfin domain and a PHD domain at their N- and C-terminus, respectively. There are 7 AL proteins in Arabidopsis, and the PHD domains of most AL proteins are reported to bind to histone H3K4me3. Here we reported gene cloning, protein expression and purification of the PHD domains of all the AL family proteins in Arabidopsis. We then systematically characterized their histone binding abilities by quantitative isothermal titration calorimetry and fluorescence polarization binding assays. Our binding results indicate that all the PHD domains of the AL proteins bind to the histone H3K4me3 peptide with varying methylation state preference and binding affinities. Our study presented here provides the foundation for further studies of the peptide state-specific recognition by PHD domains of AL proteins.
摘要:
Tumor remains a challenging task for oncology community. Drug resistance due to chemotherapy remain principal impediments toward potential therapeutic strategies. Development of novel anti-cancer drugs or new targeted strategies to conquer drug resistance is a key goal of cancer research. In this respect, novel tumor gatekeepers and innovative targeted strategies can be helpful in overcoming drug resistance as well as improve currently used targeted therapies. In this review, efforts have been made to present some of the latest knowledge about novel tumor gatekeepers and new therapeutic strategies to improve the efficacy of chemotherapy and give new hope to cancer patients to fight against cancer.
摘要:
The CW domain is a zinc binding domain, composed of approximately 50- 60 amino acid residues with four conserved cysteine (C) and two to four conserved tryptophan (W) residues. The members of the superfamily of CW domain containing proteins, comprised of 12 different eukaryotic nuclear protein families, are extensively expressed in vertebrates, vertebrate-infecting parasites and higher plants, where they are often involved in chromatin remodeling, methylation recognition, epigenetic regulation and early embryonic development. Since the first CW domain structure was determined 5 years ago, structures of five CW domains have been solved so far. In this review, we will discuss these recent advances in understanding the identification, definition, structure, and functions of the CW domain containing proteins.
期刊:
Fish Physiology and Biochemistry,2016年42(3):1053-1061 ISSN:0920-1742
通讯作者:
Zhao, Haobin
作者机构:
[Guo, Maomao; Zhang, Runshuai; Cheng, Nana; Qi, Chao; Zhang, Xueyan; Zhou, Qingchun; Zhao, Haobin; Chang, Pei; Zhong, Xueping] Cent China Normal Univ, Sch Life Sci, Hubei Key Lab Genet Regulat & Integrat Biol, Wuhan 430079, Peoples R China.
通讯机构:
[Zhao, Haobin] C;Cent China Normal Univ, Sch Life Sci, Hubei Key Lab Genet Regulat & Integrat Biol, Wuhan 430079, Peoples R China.
关键词:
mep50;Prmt5;Medaka;Expression pattern;In situ hybridization;Yeast two hybridization
摘要:
Protein arginine methylation is important for gene regulation and biological processes. Methylosome protein 50 (Mep50) is identified as a partner of protein arginine methyltransferase 5 (Prmt5), a major enzyme capable of symmetric dimethylation, in mammals and Xenopus. The isolation and characterization of medaka mep50 were reported in this paper. Medaka Mep50 is a homolog of human MEP50 with six WD40 domains. Medaka mep50 was ubiquitously expressed in the adult tissues and had maternal origin with continuous and dynamical expression during embryonic development detected by RT-PCR and in situ hybridization. A strong interaction of medaka Mep50 and Prmt5 was shown by yeast two hybridization. The expression pattern of mep50 is similar to that of prmt5 in medaka. The results suggested that medaka Mep50 could be a partner of Prmt5 and might play major roles in a variety of tissues in medaka.
期刊:
CURRENT PROTEIN & PEPTIDE SCIENCE,2016年17(4):306-318 ISSN:1389-2037
通讯作者:
Liu, Ke;Qi, Chao
作者机构:
[Liu, Ke; Qi, Chao; Liu, Jinlin; Ye, Weiyuan; Ding, Yumin; Liu, Yanli; Yang, Jihong] Cent China Normal Univ, Sch Life Sci, Hubei Key Lab Genet Regulat & Integrat Biol, Wuhan 430079, Peoples R China.
通讯机构:
[Liu, K; Qi, C] C;Cent China Normal Univ, Sch Life Sci, Hubei Key Lab Genet Regulat & Integrat Biol, Wuhan 430079, Peoples R China.
关键词:
M6A;RNA methyltransferase and demethylase;YTH domain
摘要:
RNA modification, involving in a wide variety of cellular processes, has been identified over 100 types since 1950s. N6-methyladenosine (m6A), as one of the most abundant RNA modifications, is found in several RNA species and predominantly located in the stop codons, long internal exons as well as 3’UTR. It was reported that m6A modification preferentially appears after G in the conserved motif RRm6ACH (R = A/G and H = A/C/U). There are two families of enzymes responsible for maintaining the balance of m6A modification: m6A methyltransferases and demethylases, which add and remove methyl marks for adenosine of RNA, respectively. METTL3 complex, the m6A methyltransferases, and two kinds of demethylases including Fat mass and obesity-associated protein (FTO) and alkylation protein AlkB homolog 5 (ALKBH5) are characterized thus far. Besides the “writers” and “erasers”, m6A specific recognizing proteins, such as the YTH (YT521-B homology) domain family proteins, also have attracted significant attention. Herein, we focus on the recent progress in understanding the biological/biochemical functions and structures of proteins responsible for the m6A modification and recognition. Detailed analyses of these important proteins are essential for the further study of their biological function and will also guide us in designing more potent and specific small-molecule chemical inhibitors for these targets.
摘要:
Background: The chemical and biological compositions of deep-sea sediments are interesting because of the underexplored diversity when it comes to bioprospecting. The special geographical location and climates make Arctic Ocean a unique ocean area containing an abundance of microbial resources. Methods: A metagenomic library was constructed based on the deep-sea sediments of Arctic Ocean. Part of insertion fragments of this library were sequenced. A chitin deacetylase gene, cdaYJ, was identified and characterized. Results: A metagenomic library with 2750 clones was obtained and ten clones were sequenced. Results revealed several interesting genes, including a chitin deacetylase coding sequence, cdaYJ. The CdaYJ is homologous to some known chitin deacetylases and contains conserved chitin deacetylase active sites. CdaYJ protein exhibits a long N-terminal and a relative short C-terminal. Phylogenetic analysis revealed that CdaYJ showed highest homology to CDAs from Alphaproteobacteria. The cdaYJ gene was subcloned into the pET-28a vector and the recombinant CdaYJ (rCdaYJ) was expressed in Escherichia coli BL21 (DE3). rCdaYJ showed a molecular weight of 43 kDa, and exhibited deacetylation activity by using p-nitroacetanilide as substrate. The optimal pH and temperature of rCdaYJ were tested as pH 7.4 and 28 degrees C, respectively. Conclusions: The construction of metagenomic library of the Arctic deep-sea sediments provides us an opportunity to look into the microbial communities and exploiting valuable gene resources. A chitin deacetylase CdaYJ was identified from the library. It showed highest deacetylation activity under slight alkaline and low temperature conditions. CdaYJ might be a candidate chitin deacetylase that possesses industrial and pharmaceutical potentials. (C) 2016 Elsevier B.V. All rights reserved.