作者机构:
[Li, Gongbao] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.;Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
通讯机构:
[Li, Gongbao] C;Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.
摘要:
In this paper, we study the existence and multiplicity of solutions with a prescribed L-2-norm for a class of nonlinear fractional Choquard equations in Double-struck capital R-N: (-Delta)su-lambda u=(kappa a*|u|p-2u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${( - \Delta )<^>s}u - \lambda u = ({\kappa _a}*|u{|<^>{p - {2_u}}})$$\end{document} where N > 3, s is an element of (0, 1), alpha is an element of (0, N), p is an element of(max{1+a+2sN,2}N+aN-2s)and kappa a(x)=|x|a-N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in (max\{ 1 + \frac{{a + 2s}}{N},2\} \frac{{N + a}}{{N - 2s}})and{\kappa _a}(x) = |x{|<^>{a - N}}$$\end{document} considered, the functional I is unbounded from below on S(c). By using the constrained minimization method on a suitable submanifold of S(c), we prove that for any c > 0, I has a critical point on S(c) with the least energy among all critical points of I restricted on S(c). After that, we describe a limiting behavior of the constrained critical point as c vanishes and tends to infinity. Moreover, by using a minimax procedure, we prove that for any c > 0, there are infinitely many radial critical points of I restricted on S(c).
作者机构:
[Li, Gongbao] Cent China Normal Univ, Sch Math & Stat, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.;Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
通讯机构:
[Li, Gongbao] C;Cent China Normal Univ, Sch Math & Stat, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.
摘要:
In this paper, we consider the nonlocal Kirchhoff problem -(c(2)a + cb integral(R3 )vertical bar del u vertical bar(2)) Delta u + V(x)u = u(p), u > 0, u is an element of H1(R-3) where a, b > 0, 1 < p < 5 are constants, c > 0 is a parameter. Under some assumptions on V(x), we show the local uniqueness of positive multi-peak solutions by using the local Pohozaev identity.
作者机构:
[Li, Gongbao] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.;Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
通讯机构:
[Li, Gongbao] C;Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.
关键词:
existence of a weak solution;fractional Laplacian;double critical exponents;Hardy term;weighted Morrey space;improved Sobolev inequality
摘要:
In this paper, we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:
0.1
$${( - \Delta )^s}u - \gamma {u \over {{{\left| x \right|}^{2s}}}} = {{{{\left| u \right|}^{2_s^ * (\beta ) - 2}}u} \over {{{\left| x \right|}^\beta }}} + \left[ {{I_\mu } * {F_\alpha }( \cdot ,u)} \right](x){f_\alpha }(x,u),\;\;\;\;u \in {\dot H^{^s}}({\mathbb{R}^n}),$$
where
$$s \in (0,1),0 \le \alpha ,\beta < 2c < n,\mu \in (0,n),\gamma < {\gamma _H},{I_\mu }(x) = {\left| x \right|^{ - \mu }},{F_\alpha }(x,u) = {{{{\left| {u(x)} \right|}^{2_\mu ^\# (\alpha )}}} \over {{{\left| x \right|}^{{\delta _\mu }(\alpha )}}}},\;{f_\alpha }(x,u) = {{{{\left| {u(x)} \right|}^{2_\mu ^\# (\alpha ) - 2}}u(x)} \over {{{\left| x \right|}^{{\delta _\mu }(\alpha )}}}},2_\mu ^\# (\alpha ) = (1 - {\textstyle{\mu \over {2n}}}) \cdot 2_s^ * (\alpha ),\;{\delta _\mu }(\alpha ) = (1 - {\textstyle{\mu \over {2n}}})\alpha ,\;2_s^ * (\alpha ) = {{2(n - \alpha )} \over {n - 2s}}$$
and
$${\gamma _H} = {4^s}{{{\Gamma ^2}({\textstyle{{n + 2s} \over 4}})} \over {{\Gamma ^2}({\textstyle{{n - 2s} \over 4}})}}.$$
. We show that problem (0.1) admits at least a weak solution under some conditions. To prove the main result, we develop some useful tools based on a weighted Morrey space. To be precise, we discover the embeddings
0.2
$${\dot H^s}({\mathbb{R}^n})\alpha {L^{2_s^ * (\alpha )}}({\mathbb{R}^n},{\left| y \right|^{ - \alpha }})\alpha {L^{p,{\textstyle{{n - 2s} \over 2}}p + pr}}({\mathbb{R}^n},{\left| y \right|^{ - pr}}),$$
where s ∈ (0, 1), 0 < α < 2s < n, p ∈ [1, 2s*(α)) and
$$r = {\textstyle{\alpha \over {2_s^ * (\alpha )}}}.$$
. We also establish an improved Sobolev inequality,
0.3
$${\left( {\int_{{\mathbb{R}^n}} {{{{{\left| {u(y)} \right|}^{2_s^ * (\alpha )}}} \over {{{\left| y \right|}^\alpha }}}} {\rm{d}}y} \right)^{{\textstyle{1 \over {2_s^ * (\alpha )}}}}} \le C\left\| u \right\|_{{{\dot H}^s}({\mathbb{R}^n})}^\theta \left\| u \right\|_{{L^{p,{\textstyle{{n - 2s} \over 2}}p + pr}}({\mathbb{R}^n},{{\left| y \right|}^{ - pr}})}^{1 - \theta },\;\;\;\;\;\;\forall u \in {\dot H^s}({\mathbb{R}^n}),$$
where
$$s \in (0,1),\;0 \le \alpha < 2s < n,p \in [1,2_s^ * (\alpha )),\;r = {\alpha \over {2_s^ * (\alpha )}},\;0 < \max {\rm{\{ }}{2 \over {2_s^ * (\alpha )}}{\rm{,}}{{2_s^ * - 1} \over {2_s^ * (\alpha )}}{\rm{\} }} < \theta < 1,\;2_s^ * = {{2n} \over {n - 2s}}$$
and C= C(n, s, α) 0 is a constant. Inequality (0.3) is a more general form of Theorem 1 in Palatucci, Pisante [1]. By using the mountain pass lemma along with (0.2) and (0.3), we obtain a nontrivial weak solution to problem (0.1) in a direct way. It is worth pointing out that (0.2) and (0.3) could be applied to simplify the proof of the existence results in [2] and [3].
摘要:
<p style='text-indent:20px;'>In this article, we deal with the existence, qualitative and symmetry properties of normalized solutions to the following nonlinear Schrödinger system</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \begin{cases} -\Delta u+(x_{1}^{2}+x_{2}^{2})u = \lambda_{1}u+\mu_{1}u^{3}+\beta uv^{2}, &\quad x\in \mathbb{R}^3,\\ -\Delta v+(x_{1}^{2}+x_{2}^{2})v = \lambda_{2}v+\mu_{2}v^{3}+\beta u^{2}v, &\quad x\in \mathbb{R}^3, \end{cases} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M2">\begin{document}$ \mu_{i}>0 $\end{document}</tex-math></inline-formula> (<inline-formula><tex-math id="M3">\begin{document}$ i $\end{document}</tex-math></inline-formula> = 1, 2), <inline-formula><tex-math id="M4">\begin{document}$ \beta>0 $\end{document}</tex-math></inline-formula>, and the frequencies <inline-formula><tex-math id="M5">\begin{document}$ \lambda_{1} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ \lambda_{2} $\end{document}</tex-math></inline-formula> are unknown and appear as Lagrange multipliers. In addition, we study the stability of the corresponding standing waves for the related time-dependent Schrödinger systems. We mainly extend the results in J. Bellazzini et al. (Commun. Math. Phys. 2017), which dealt with mass-supercritical nonlinear Schrödinger equation with partial confinement, to cubic nonlinear Schrödinger systems with partial confinement.</p>
摘要:
In this paper, we revisit the singularly perturbation problem -(epsilon(2)a + epsilon b integral(R3) vertical bar del u vertical bar(2)) Delta u + V(x)u = vertical bar u vertical bar(p-1)u in R-3, (0.1) where a, b, epsilon > 0, 1 < p < 5 are constants and V is a potential function. First we establish the uniqueness and nondegeneracy of positive solutions to the limiting Kirchhoff problem - (a + b integral(R3) vertical bar del u vertical bar(2)) Delta u + u = vertical bar u vertical bar(p-1)u in R-3. Then, combining this nondegeneracy result and Lyapunov-Schmidt reduction method, we derive the existence of solutions to (0.1) for epsilon > 0 sufficiently small. Finally, we establish a local uniqueness result for such derived solutions using this nondegeneracy result and a type of local Pohozaev identity. (C) 2019 Elsevier Inc. All rights reserved.
期刊:
Journal of Differential Equations,2019年266(11):7101-7123 ISSN:0022-0396
通讯作者:
Li, Gongbao
作者机构:
[Li, Gongbao; Ye, Hongyu] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.;[Li, Gongbao; Ye, Hongyu] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430065, Hubei, Peoples R China.
通讯机构:
[Li, Gongbao] C;Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.
关键词:
Kirchhoff equation;Mass concentration;Constrained minimization;Normalized solutions;Sharp existence
摘要:
In this paper, we study the existence and concentration behavior of minimizers for i(V)(c) = inf (u is an element of Sc) I-V(u), here S-c ={u is an element of H-1(R-N)vertical bar integral(RN) V(x)vertical bar u vertical bar(2) < +infinity, vertical bar u vertical bar(2) = c > 0} and IV(u) =1/2 integral(RN) (a vertical bar del u vertical bar(2)+ V(x)vertical bar u vertical bar(2)) + b/4 (integral(RN)vertical bar del u vertical bar(2))(2) - 1/p integral(RN)vertical bar u vertical bar(p), where N = 1, 2, 3 and a, b > 0 are constants. By the Gagliardo-Nirenberg inequality, we get the sharp existence of global constraint minimizers of i(V) (c) for 2 < p < 2* when V(x) >= 0, V(x) is an element of L-loc(infinity)(R-N) and lim(vertical bar x vertical bar ->+infinity) V(x) = +infinity. For the case p is an element of(2, 2N+8/N)\{4}, we prove that the global constraint minimizers u(c) of iV(c) behave like u(c)(x) approximate to c/vertical bar Q(p)vertical bar(2) (m(c)/c)(n/2) Q(p) (mc/c x - z(c)) , for some z(c) is an element of R-N when c is large, where Q(p) is, up to translations, thw unique positive solution of -N(p-2)/4 Delta Q(p) + 2N-p(N-2)/4 Q(p) = vertical bar Q(p)vertical bar(p-2) Q(p) in R-N and m(c) = (root a(2)D(1)(2)-4bD(2)i(0)(c)+aD(1)/2bD(2))1/2, D-1 = Np-2N-4/2N(p-2) and D-2 = 2N+8-Np/4N(p-2) . (C) 2018 Elsevier Inc. All rights reserved.
作者机构:
[Li, Gongbao] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China.;Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.
通讯机构:
[Li, Gongbao] C;Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China.
关键词:
Schrodinger-Kirchhoff type equation;variational methods;multiple positive solutions;concentrating solution;penalization method
摘要:
In this article, we study the multiplicity and concentration behavior of positive solutions for the p-Laplacian equation of Schrodinger-Kirchhoff type -epsilon M-p(epsilon(p-N)integral(RN)vertical bar del u vertical bar(p))Delta(p)u + V(x)vertical bar u vertical bar(p-2)u = f(u) in R-N, where Delta(p) is the p-Laplacian operator, 1 < p < N, M : R+ -> R+ and V : R-N -> R+ are continuous functions, epsilon is a positive parameter, and f is a continuous function with subcritical growth. We assume that. V satisfies the local condition introduced by M. del Pino and P. Felmer. By the variational methods, penalization techniques, and LyusternikSchnirelrnann theory, we prove the existence, multiplicity-, arid concentration of solutions for the above equation.
作者机构:
[Li, Gongbao] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.;[Li, Gongbao] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China.;[Xiang, Chang-Lin] Yangtze Univ, Sch Informat & Math, Jingzhou 434023, Peoples R China.
期刊:
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA,2018年43:991-1021 ISSN:1239-629X
通讯作者:
Li, Gongbao
作者机构:
[Jia, Huifang] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.;[Li, Gongbao] Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.
通讯机构:
[Li, Gongbao] N;Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.
关键词:
Concentration behavior;Ground state solution;Schrödinger-Kirchhoff type equations;Variational methods
摘要:
In this paper, we study the following fractional Schrodinger Kirchhoff type problem (Q(epsilon)) {L(epsilon)(s)u = K (x)f (u) in R-3, u is an element of H-s (R-3), where L-epsilon(s) is a nonlocal operator defined by L(epsilon)(s )u = M (1/epsilon(3-2s )integral integral R3x R3 vertical bar u(x)-u(y)vertical bar(2)/vertical bar x-y vertical bar(3+2s)dx dy +1/epsilon(3)integral R3 V(x)u(2)dx)[epsilon(2s) (-Delta)(s) u + V(x ) u], epsilon is a small positive parameter, 3/4 < s < 1 is a fixed constant, the operator (-Delta)(s )is the fractional Laplacian of order s, M, V, K and f are continuous functions. Under proper assumptions on M, V, K and f, we prove the existence and concentration phenomena of solutions of the problem (Q(epsilon)). With minimax theorems and the Ljusternik-Schnirelmann theory, we also obtain multiple solutions of problem (Q(epsilon)) by employing the topology of the set where the potentials V(x) attains its minimum and K(x) attains its maximum.
期刊:
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA,2017年42(1):405-428 ISSN:1239-629X
通讯作者:
Li, Gongbao
作者机构:
[Li, Gongbao; Luo, Xiao] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan, Peoples R China.;[Li, Gongbao; Luo, Xiao] Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China.
通讯机构:
[Li, Gongbao] C;Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan, Peoples R China.;Cent China Normal Univ, Sch Math & Stat, Wuhan, Peoples R China.
摘要:
In this paper, we study the existence and multiplicity of solutions with a prescribed L-2-norm for a class of nonlinear Chern Simons Schrodinger equations in R-2 where To get such solutions we look for critical points of the energy functional on the constraints When p = 4, we prove a sufficient condition for the nonexistence of constrain critical points of I on S-r(c) for certain c and get infinitely many minimizers of I on Sr(8 pi). For the value p epsilon (4, +infinity) considered, the functional I is unbounded from below on Sr(c). By using the constrained minimization method on a suitable submanifold of S-r(c), we prove that for certain c > 0, I has a critical point on Sr(c). After that, we get an H-1-bifurcation result of our problem. Moreover, by using a minimax procedure, we prove that there are infinitely many critical points of I restricted on S-r(c) for any c epsilon (0, 4 pi/root p-3).
期刊:
Journal of Mathematical Analysis and Applications,2017年455(2):1559-1578 ISSN:0022-247X
通讯作者:
Li, Gongbao
作者机构:
[Li, Gongbao] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China.;Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China.
通讯机构:
[Li, Gongbao] C;Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China.
关键词:
Gauged Schr?dinger equation;Least energy sign-changing solutions;Asymptotic behavior
摘要:
<![CDATA[<ce:abstract xmlns:ce="" xmlns="" id="ab0010" view="all" class="author"> <ce:section-title id="st0010">Abstract</ce:section-title> <ce:abstract-sec id="as0010" view="all"> <ce:simple-para id="sp0010" view="all">We study the existence and asymptotic behavior of the least energy sign-changing solutions to a gauged nonlinear Schr?dinger equation<ce:display> <ce:formula id="fm0010"> <mml:math xmlns:mml="" altimg="si1.gif" display="inline" overflow="scroll"> <mml:mrow> <mml:mo stretchy="true">{</mml:mo> <mml:mtable> <mml:mtr> <mml:mtd columnalign="left"> <mml:mo>?</mml:mo> <mml:mi mathvariant="normal">Δ</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>ω</mml:mi> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>λ</mml:mi> <mml:mo stretchy="true" maxsize="3.8ex" minsize="3.8ex">(</mml:mo> <mml:mfrac> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>h</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup>
期刊:
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS,2016年36(2):731-762 ISSN:1078-0947
通讯作者:
He, Yi
作者机构:
[He, Yi] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.;Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
通讯机构:
[He, Yi] C;Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.
会议名称:
2013 Workshop on Variational Problems and Evolution Equations
摘要:
We study the existence, concentration and multiplicity of weak solutions to the
quasilinear Schrödinger equation with critical Sobolev growth
\begin{equation*}
\left\{ \begin{gathered}
- {\varepsilon ^2}\Delta u + V(x)u - {\varepsilon ^2}\Delta (u^2)u = W(x){u^{q - 1}} + {u^{2\cdot{2^*} - 1}} {\text{ in }}{\mathbb{R}^N},\\
u > 0{\text{ in }}{\mathbb{R}^N},\\
\end{gathered} \right.
\end{equation*}
where $\varepsilon $ is a small positive parameter, $N \ge 3$, ${2^ * } = \frac{{2N}}
{{N - 2}}$, $4 < q < 2 \cdot {2^ * }$, $\min V > 0$ and $\inf W > 0$. Under proper assumptions, we obtain the existence and concentration phenomena of soliton solutions of the above problem. With minimax theorems and Ljusternik-Schnirelmann theory, we also obtain multiple soliton solutions by employing the topology of the set where the potentials $V(x)$ attains its minimum and $W(x)$ attains its maximum.
期刊:
MATHEMATICAL CONTROL AND RELATED FIELDS,2016年6(4):551-593 ISSN:2156-8472
通讯作者:
Li, Gongbao
作者机构:
[He, Yi] South Cent Univ Nationalities, Sch Math & Stat, Wuhan 430074, Peoples R China.;[Li, Gongbao] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.;[Li, Gongbao] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
通讯机构:
[Li, Gongbao] C;Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.;Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
摘要:
We are concerned with a class of singularly perturbed quasilinear Schrödinger equations of the following form: \[ - {\varepsilon ^2}\Delta u - {\varepsilon ^2}\Delta ({u^2})u + V(x)u = h(u),{\text{ }}u > 0{\text{ in }}{\mathbb{R}^N}, \] where $\varepsilon $ is a small positive parameter, $N \ge 3$ and the nonlinearity $h$ is of critical growth. We construct a family of positive solutions ${u_\varepsilon } \in {H^1}({\mathbb{R}^N})$ of the above problem which concentrates around local minima of $V$ as $\varepsilon \to 0$ under certain assumptions on $h$. Our result especially solves the above problem in the case where $h(u) \sim \lambda {u^{q - 1}} + {u^{2 \cdot {2^ * } - 1}}{\text{ }}(2 < q \le 4,{\text{ }}\lambda > 0)$ and completes the study made in some recent works in the sense that, in those papers only the case where $h(u) \sim \lambda {u^{q - 1}} + {u^{2 \cdot {2^ * } - 1}}{\text{ }}(4 < q < 2 \cdot {2^ * },{\text{ }}\lambda > 0)$ was considered. Moreover, our main results extend also the arguments used in Byeon and Jeanjean [14], which deal with Schrödinger equations with subcritical nonlinearities, to the quasilinear Schrödinger equations with critical nonlinearities.
作者机构:
[Li, Gong-bao] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.;Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
通讯机构:
[Li, Gong-bao] C;Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.
摘要:
In this paper, we study the existence of multiple solutions to the following nonlinear elliptic boundary value problem of p-Laplacian type: {-Delta(p)u = f(x,u), x is an element of Omega, u = 0, x is an element of partial derivative Omega, where 1 < p < infinity, Omega subset of R-N is a bounded smooth domain, Delta(p)u = div (vertical bar Du vertical bar(p-2)Du) is the p-Laplacian of u and f: Omega x R -> R satisfies lim(vertical bar t vertical bar ->infinity) f(x, t)/vertical bar t vertical bar(p-2)t = l uniformly with respect to x is an element of Omega, and l is not an eigenvalue of -Delta(p) in W-0(1,p)(Omega) but f(x, t) dose not satisfy the Ambrosetti-Rabinowitz condition. Under suitable assumptions on f (x, t), we have proved that (*) has at least four nontrivitial solutions in W-0(1,p) (Omega) by using Nonsmooth Mountain-Pass Theorem under (C)(c) condition. Our main result generalizes a result by N. S. Papageorgiou, E. M. Rocha and V. Staicu in 2008 (Calculus of Variations and Partial Differential Equations, 33: 199-230(2008)) and a result by G. B. Li and H. S. Zhou in 2002 (Journal of the London Mathematical Society, 65: 123-138(2002)).
期刊:
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA,2015年40(2):729-766 ISSN:1239-629X
通讯作者:
Li, Gongbao
作者机构:
[He, Yi; Li, Gongbao] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.;[He, Yi; Li, Gongbao] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
通讯机构:
[Li, Gongbao] C;Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.
摘要:
We are concerned with the following Schrodinger-Poisson equation with critical nonlinearity: {-epsilon(2)Delta u + V(x)u + psi u = lambda vertical bar u vertical bar(p-2)u + vertical bar u vertical bar(4)u in R-3, -epsilon(2)Delta psi = u(2) in R-3, u > 0, u is an element of H-1(R-3), where epsilon > 0 is a small positive parameter, lambda > 0, 3 < p <= 4. Under certain assumptions on the potential V, we construct a family of positive solutions u epsilon is an element of H-1 (R-3) which concentrates around a local minimum of V as epsilon --> 0. Subcritical growth Schrodinger-Poisson equation {-epsilon(2)Delta u + V(x)u + psi u = f(u) in R-3, -epsilon(2)Delta psi = u(2) in R-3, u > 0, u is an element of H-1(R-3), has been studied extensively, where the assumption for f(u) is that f(u) similar to vertical bar u vertical bar(p-2)u with 4 < p < 6 and satisfies the Ambrosetti-Rabinowitz condition which forces the boundedness of any Palais-Smale sequence of the corresponding energy functional of the equation. The more difficult critical case is studied in this paper. As g(u) := lambda vertical bar u vertical bar(p-2)u + vertical bar u vertical bar(4)u with 3 < p < 4 does not satisfy the Ambrosetti-Rabinowitz condition (there exists mu > 4, 0 < mu integral(u)(0) g(s) ds <= g(u)u), the boundedness of Palais-Smale sequence becomes a major difficulty in proving the existence of a positive solution. Also, the fact that the function g(s)/s(3) is not increasing for s > 0 prevents us from using the Nehari manifold directly as usual. The main result we obtained in this paper is new.
期刊:
Calculus of Variations and Partial Differential Equations,2015年54(3):3067-3106 ISSN:0944-2669
通讯作者:
Li, Gongbao
作者机构:
[He, Yi; Li, Gongbao] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.;[He, Yi; Li, Gongbao] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
通讯机构:
[Li, Gongbao] C;Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.
关键词:
35J60;35J92;Primary 35J20
摘要:
We are concerned with the following Kirchhoff type equation with critical nonlinearity:
$$\begin{aligned} \left\{ \begin{array}{ll} - \Bigl ( {{\varepsilon ^2}a + \varepsilon b\int _{{\mathbb {R}^3}} {{{| {\nabla u} |}^2}} } \Bigr )\Delta u + V(x)u = \lambda {| u |^{p - 2}}u + {| u |^4}u{\text { in }}{\mathbb {R}^3}, \\ u > 0,u \in {H^1}({\mathbb {R}^3}), \\ \end{array} \right. \end{aligned}$$
where
$$\varepsilon $$
is a small positive parameter,
$$a,b>0$$
,
$$\lambda > 0$$
,
$$2 < p \le 4$$
. Under certain assumptions on the potential V, we construct a family of positive solutions
$${u_\varepsilon } \in {H^1}({\mathbb {R}^3})$$
which concentrates around a local minimum of V as
$$\varepsilon \rightarrow 0$$
. Although, critical growth Kirchhoff type problem
$$\begin{aligned} \left\{ \begin{array}{ll} - \Bigl ( {{\varepsilon ^2}a + \varepsilon b\int _{{\mathbb {R}^3}} {{{| {\nabla u} |}^2}} } \Bigr )\Delta u + V(x)u = f(u)+{u^5}{\text { in }}{\mathbb {R}^3}, \\ u > 0,u \in {H^1}({\mathbb {R}^3}) \\ \end{array} \right. \end{aligned}$$
has been studied in e.g. He et al. [18], where the assumption for f(u) is that
$$f(u) \sim |u{|^{p - 2}}u$$
with
$$4 < p < 6$$
and satisfies the Ambrosetti-Rabinowitz condition which forces the boundedness of any Palais-Smale sequence of the corresponding energy functional of the equation. As
$$g(u): = \lambda {| u |^{p - 2}}u + {| u |^4u}$$
with
$$2<p\le 4$$
does not satisfy the Ambrosetti-Rabinowitz condition (
$$\exists \mu > 4, 0 < \mu \int _0^u {g(s)ds \le g(u)u}$$
), the boundedness of Palais–Smale sequence becomes a major difficulty in proving the existence of a positive solution. Also, the fact that the function
$$g(s)/{s^3}$$
is not increasing for
$$s > 0$$
prevents us from using the Nehari manifold directly as usual. Our result extends the main result in He et al. [18] concerning the existence and concentration of positive solutions to the case where
$$f(u) \sim |u{|^{p - 2}}u$$
with
$$4 < p < 6$$
.
期刊:
Journal of Differential Equations,2014年257(2):566-600 ISSN:0022-0396
通讯作者:
Li, Gongbao
作者机构:
[Li, Gongbao] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.;Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China.
通讯机构:
[Li, Gongbao] C;Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China.
关键词:
Kirchhoff equation;Ground state solutions;Pohoz̆aev type identity;Variational methods
摘要:
In this paper, we study the following nonlinear problem of Kirchhoff type with pure power nonlinearities: {-(a + b integral(R3) vertical bar Du vertical bar(2)) Delta u + V(x)u = vertical bar u vertical bar(p-1)u, x is an element of R-3, (0.1) u is an element of H-1 (R-3), u > 0, x is an element of R-3, where a, b > 0 are constants, 2 < p < 5 and V : R-3 -> R. Under certain assumptions on V. we prove that (0.1) has a positive ground state solution by using a monotonicity trick and a new version of global compactness lemma. Our main results especially solve problem (0.1) in the case where p is an element of (2, 3], which has been an open problem for Kirchhoff equations and can be viewed as a partial extension of a recent result of He and Zou in [14] concerning the existence of positive solutions to the nonlinear Kirchhoff problem {-(epsilon(2)a + epsilon b integral(R3) vertical bar Du vertical bar(2)) Delta u + V(x)u = f(u), x is an element of R-3, u is an element of H-1 (R-3), u > 0, x is an element of R-3, where epsilon > 0 is a parameter, V(x) is a positive continuous potential and f (u) similar to vertical bar u vertical bar(p-1)u with 3 < p < 5 and satisfies the Ambrosetti-Rabinowitz type condition. Our main results extend also the arguments used in [7,33], which deal with Schrodinger-Poisson system with pure power nonlinearities, to the Kirchhoff type problem. (C) 2014 Elsevier Inc. All rights reserved.