作者机构:
[Yan, Lin; Zhao, Jingyan; Peng, Jianxin; Liu, Kaiyu; Yan, Xiumei; Yang, Yongbo; Ma, Haihao; Song, Jiping; Peng, Rong] Cent China Normal Univ, Sch Life Sci, Wuhan 430079, Peoples R China.
通讯机构:
[Peng, JX; Liu, KY] C;Cent China Normal Univ, Sch Life Sci, Wuhan 430079, Peoples R China.
关键词:
Apaf-1;apoptosis;caspase;Spodoptera litura
摘要:
Simple Summary Apoptosis plays an important role in both the development of lepidopteran insects and the elimination of cells. The apoptosis signal pathways are well documented in mammals and Drosophila melanogaster. However, it remains less clear in lepidopteran insects. This study characterized the apoptotic protease activating factor-1 (Apaf-1) from Spodoptera litura. The results showed that S. litura Apaf-1 (Sl-Apaf-1) is similar to the mammalian Apaf-1. Sl-Apaf-1 consists of a caspase recruitment domain (CARD), as well as nucleotide-binding and oligomerization domain (NOD) and the C-terminal WD40-repeat domain (WD), and interacts with Sl-caspase-5 (a homologue of mammalian caspase-9). The activated Sl-caspase-5 can cleave Sl-procaspase-1 (a homologue of caspase-3 in mammals), which directly causes apoptosis. The apoptosis signal pathway is conserved between lepidopteran insects and mammals. Apoptotic protease activating factor-1 (Apaf-1) is an adaptor molecule, essential for activating initiator caspase and downstream effector caspases, which directly cause apoptosis. In fruit flies, nematodes, and mammals, Apaf-1 has been extensively studied. However, the structure and function of Apaf-1 in Lepidoptera remain unclear. This study identified a novel Apaf-1 from Spodoptera litura, named Sl-Apaf-1. Sl-Apaf-1 contains three domains: a CARD domain, as well as NOD and WD motifs, and is very similar to mammalian Apaf-1. Interference of Sl-apaf-1 expression in SL-1 cells blocked apoptosis induced by actinomycin D. Overexpression of Sl-apaf-1 significantly enhances apoptosis induced by actinomycin D in Sf9/SL-1/U2OS cells, suggesting that the function of Sl-Apaf-1 is evolutionarily conserved. Furthermore, Sl-Apaf-1 could interact with Sl-caspase-5 (a homologue of mammalian caspase-9) and yielded a binding affinity of 1.37 x 10(6) M-1 according isothermal titration calorimetry assay. Initiator caspase (procaspase-5) of S. litura could be activated by Sl-Apaf-1 (without WD motif) in vitro, and the activated Sl-caspase-5 could cleave Sl-procaspase-1 (a homologue of caspase-3 in mammals), which directly caused apoptosis. This study demonstrates the key role of Sl-Apaf-1 in the apoptosis pathway, suggesting that the apoptosis pathway in Lepidopteran insects and mammals is conserved.
作者机构:
[Yong, Yu-Le; Lin, Peng; Liu, Man; Zheng, Nai-Shan; Li, Hao; Zhang, Ren-Yu; Chen, Zhi-Nan; Bian, Huijie; Liu, Ze-Kun; Wei, Ding] Fourth Mil Med Univ, Natl Translat Sci Ctr Mol Med, Dept Cell Biol, Xian 710032, Peoples R China.;[Liu, Ke] Cent China Normal Univ, Sch Life Sci, Wuhan 430079, Peoples R China.;[Yang, Xiao-Zhen; Hu, Cai-Xia] Capital Med Univ, Beijing Youan Hosp, Oncol & Hepatobiliary Minimally Invas Intervent C, Beijing 100069, Peoples R China.
通讯机构:
[Chen, ZN; Bian, HJ] F;Fourth Mil Med Univ, Natl Translat Sci Ctr Mol Med, Dept Cell Biol, Xian 710032, Peoples R China.
摘要:
Genomic sequencing analysis of tumors provides potential molecular therapeutic targets for precision medicine. However, identifying a key driver gene or mutation that can be used for hepatocellular carcinoma (HCC) treatment remains difficult. Here, we performed whole-exome sequencing on genomic DNA obtained from six pairs of HCC and adjacent tissues and identified two novel somatic mutations of UBE2S (p. Gly57Ala and p. Lys63Asn). Predictions of the functional effects of the mutations showed that two amino-acid substitutions were potentially deleterious. Further, we observed that wild-type UBE2S, especially in the nucleus, was significantly higher in HCC tissues than that in adjacent tissues and closely related to the clinicopathological features of patients with HCC. Functional assays revealed that overexpression of UBE2S promoted the proliferation, invasion, metastasis, and G1/S phase transition of HCC cells in vitro, and promoted the tumor growth significantly in vivo. Mechanistically, UBE2S interacted with TRIM28 in the nucleus, both together enhanced the ubiquitination of p27 to facilitate its degradation and cell cycle progression. Most importantly, the small-molecule cephalomannine was found by a luciferase-based sensitive high-throughput screen (HTS) to inhibit UBE2S expression and significantly attenuate HCC progression in vitro and in vivo, which may represent a promising strategy for HCC therapy.
摘要:
Coronaviruses (CoVs) are positive single-stranded RNA viruses that cause severe respiratory syndromes in humans, including severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). Coronavirus disease 2019 (COVID-19) caused by a novel severe acute respiratory syndrome CoV (SARS-CoV-2) at the end of 2019 became a global pandemic. The 3C-like cysteine protease (3CLpro) processes viral polyproteins to yield mature non-structural proteins, thus playing an important role in the CoV life cycle, and therefore is considered as a prominent target for antiviral drugs. To date, many 3CLpro inhibitors have been reported, and their molecular mechanisms have been illustrated. Here, we briefly introduce the structural features of 3CLpro of the human-related SARS-CoV, MERS-CoV and SARS-CoV-2, and explore the potency and mechanism of their cognate inhibitors. This information will shed light on the development and optimization of CoV 3CLpro inhibitors, which may benefit the further designation of therapeutic strategies for treating CoV diseases.
摘要:
African Swine Fever Virus (ASFV) is an enveloped double-stranded DNA icosahedral virus that causes the devastating hemorrhagic fever of pigs. ASFV infections severely impact swine production and cause an enormous economic loss, but no effective vaccine and therapeutic regimen is available. pA151R is a non-structural protein of ASFV, which is expressed at both early and late stages of viral infection. Significantly, pA151R may play a key role in ASFV replication and virus assembly as suppressing pA151R expression can reduce virus replication. However, little is known about the functional and structural mechanisms of pA151R because it shares a very low sequence identity to known structures. It was proposed that pA151R might participate in the redox pathway owing to the presence of a thioredoxin active site feature, the WCTKC motif. In this study, we determined the crystal structure of pA151R. Based on the crystal structure, we found that pA151R comprises of a central five-stranded beta-sheet packing against two helices on one side and an incompact C-terminal region containing the WCTKC motif on the other side. Notably, two cysteines in the WCTKC motif, an additional cysteine C116 from the beta 7-beta 8 loop together with ND1 of H109 coordinate a Zn2+ ion to form a Zn-binding motif. These findings suggest that the structure of pA151R is significantly different from that of typical thioredoxins. Our structure should provide molecular insights into the understanding of functional and structural mechanisms of pA151R from ASFV and shall benefit the development of prophylactic and therapeutic anti-ASFV agents. (C) 2020 Elsevier Inc. All rights reserved.
摘要:
The interaction of Tudor domain-containing proteins (TDRDs) with P-element-induced wimpy testis (PIWI) proteins plays critical roles in transposon silencing and spermatogenesis. Most human TDRDs recognize PIWI proteins in a methylarginine-dependent manner via their extended Tudor (eTudor) domains, except TDRD2, which prefers an unmethylated PIWI protein. In order to illustrate the recognition of unmethylated PIWI proteins by TDRD2, we extensively tried co-crystallization of the TDRD2 eTudor with different PIWIL1 peptides, but to no avail. Recombinant antigen-binding fragments (Fabs) have been used to crystallize some difficult proteins in the past, so we generated Fab against the TDRD2 eTudor protein using a phage-display antibody library, and one of these Fab fragments indeed facilitated the co-crystallization of TDRD2 and PIWIL1. Structural analysis of Fab, the TDRD2 eTudor domain in complex with an unmethylated PIWIL1-derived peptide revealed that the PIWIL1 residues G3 through R8 bound between the Tudor core and SN domain of TDRD2. The C-terminal residues of the PIWIL1 peptide were not resolved, presumably due to steric competition with the heavy chain of the Fab. We propose Fab-assisted crystallization as a tool not only for structural studies of single proteins, but also for analysis of interactions between proteins and their ligands in cases where co-crystallization of native protein complexes fails.
期刊:
Insect Biochemistry and Molecular Biology,2020年118:103306 ISSN:0965-1748
通讯作者:
Liu, Kaiyu;Soberon, Mario
作者机构:
[Liu, Kaiyu; Wei, Wei; Yang, Yongbo; Pan, Shuang; He, Sijia; Ma, Yuemin] Cent China Normal Univ, Sch Life Sci, Wuhan 430070, Peoples R China.;[Xiao, Yutao] Chinese Acad Agr Sci, Agr Genom Inst Shenzhen, Shenzhen 518120, Peoples R China.;[Soberon, Mario; Bravo, Alejandra] Univ Nacl Autonoma Mexico, Inst Biotecnol, Apdo Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
通讯机构:
[Liu, Kaiyu] C;[Soberon, Mario] U;Cent China Normal Univ, Sch Life Sci, Wuhan 430070, Peoples R China.;Univ Nacl Autonoma Mexico, Inst Biotecnol, Apdo Postal 510-3, Cuernavaca 62250, Morelos, Mexico.
摘要:
The insecticidal Cry toxins produced by Bacillus thuringiensis (Bt) are powerful tools for insect control. Cry toxin receptors such as cadherin (CAD), ABCC2 transporter and alkaline phosphatase (ALP), located on insect midgut cells, are needed for Cry toxicity. Although insect cell lines are useful experimental models for elucidating toxin action mechanism, most of them show low expression of Cry-receptors genes. The GATA transcription factor family plays important roles in regulating development and differentiation of intestine stem cells. Here, we investigated whether GATAs transcription factors are involved in the expression of Cry1Ac-receptors genes, using multiple insect cell lines. Four GATA genes were identified in the transcriptome of the midgut tissue from the lepidopteran larvae Helicoverpa armigera. These HaGATA genes were transiently expressed in three lepidopteran cell lines, Spodoptera frugiperda Sf9, H. armigera QB-Ha-E5 and Trichoplusia ni Hi5. Analysis of transcription activity using transcriptional gene-fusions showed that only H. armigera GATAe (HaGATAe) significantly increased the transcription of CAD, ABCC2 and ALP receptors genes in all insect cell lines. Key DNA regions for HaGATAe regulation were identified in the promoter sequence of these Cry-receptors genes by using promoter deletion mapping. The transient expression of HaGATAe in these cell lines, conferred sensitivity to Cry1Ac toxin, although in Hi5 cells the susceptibility to Cry1Ac was lower than in other two cell lines. High sensitivity to Cry1Ac correlated with simultaneous transcription of ABCC2 and CAD genes in Sf9 and QB-Ha-E5 cells. Our results reveal that HaGATAe enhances transcription of several lepidopteran Cry1Ac receptor genes in cultured insect cells.
摘要:
CXXC domain- containing proteins are often involved in different biological processes, such as cell proliferation and development, apoptosis, DNA repair, signaling transduction, and tumorigenesis, by regulating transcription. 12 CXXC domain-containing proteins have been identified in human, and structural together with DNA binding studies reveal that these CXXC domains, a 50-70 residues module of two conserved CXXCXXC motifs, bind to non-methylated DNA in different sequence contexts. These CXXC domain- containing proteins and their complexes regulate various biological processes, and the CXXC domain plays an important role in the recruitment and regulation of their associated chromatin-modifying activities. In this review, we summarize these human CXXC domain- containing proteins in terms of their structures, biology, and biochemistry, and also discuss how they mediate cross-talk among different epigenetic modifications. (C) 2019 Elsevier Ltd. All rights reserved.
摘要:
Cotton bollworm (Helicoverpa armigera) is the major insect herbivore of cotton plants. As its larvae feed and grow on cotton, H. armigera can likely tolerate gossypol, the main defense metabolite produced by cotton plants, through detoxification and sequestration mechanisms. Recent reports have shown that various P450 monooxygenases and UDP-glycosyltransferases in H. armigera are involved in gossypol detoxification, while the roles of ABC transporters, another gene family widely associated with metabolite detoxification, remain to be elucidated. Here, we show that ingestion of gossypol-infused artificial diet and cotton leaves significantly induced the expression of HaABCB6 in H. armigera larvae. Knockdown and knockout of HaABCB6 increased sensitivity of H. armigera larvae to gossypol. Moreover, HaABCB6-GFP fusion protein was localized on lysosomes in Hi5 cells and its overexpression significantly enhanced gossypol tolerance in vitro. These experimental results strongly support that HaABCB6 plays an important role in gossypol detoxification by H. armigera.
摘要:
Tudor domain-containing (TDRD) proteins, as a family of evolutionarily conserved proteins, have been studied extensively in recent years in terms of their biological and biochemical functions. A major function of the TDRD proteins is to recognize the N-terminal arginine-rich motifs of the P-element-induced wimpy testis (PIWI) proteins via their conserved extended Tudor (eTudor or eTud) domains, which is essential in piRNA biogenesis and germ cell development. In this review, we summarize recent progress in the study of the TDRD proteins, and discuss the molecular mechanisms for the different binding selectivity of these eTudor domains to PIWI proteins based on the available binding and structural data. Understanding the binding differences of these TDRDs to PIWI proteins will help us better understand their functional differences and aid us in developing the target-specific therapeutics, because overexpression or mutations of the human TDRD proteins have been demonstrated to associate with various diseases.
摘要:
Insecticidal proteins from Bacillus thuringiensis (Bt) are widely used to control insect pests, but their efficacy is reduced when pests evolve resistance. We report on a novel allele (r16) of the cadherin gene (PgCad1) in pink bollworm (Pectinophora gossypiella) associated with resistance to Bt toxin Cry1Ac, which is produced by transgenic cotton. The r16 allele isolated from a field population in China has 1545 base pairs of a degenerate transposon inserted in exon 20 of PgCad1, which generates a mis-spliced transcript containing a premature stop codon. A strain homozygous for r16 had 300-fold resistance to Cry1Ac, 2.6-fold cross-resistance to Cry2Ab, and completed its life cycle on transgenic Bt cotton producing Cry1Ac. Inheritance of Cry1Ac resistance was recessive and tightly linked with r16. Compared with transfected insect cells expressing wild-type PgCad1, cells expressing r16 were less susceptible to Cry1Ac. Recombinant cadherin protein was transported to the cell membrane in cells transfected with the wild-type PgCad1 allele, but not in cells transfected with r16. Cadherin occurred on brush border membrane vesicles (BBMVs) in the midgut of susceptible larvae, but not resistant larvae. These results imply that the r16 allele mediates Cry1Ac resistance in pink bollworm by interfering with the localization of cadherin.
摘要:
<jats:title>Abstract</jats:title><jats:p>Transgenic crops producing insecticidal proteins from <jats:italic>Bacillus thuringiensis</jats:italic> (Bt) are cultivated extensively, but rapid evolution of resistance by pests reduces their efficacy. We report a 3,370-bp insertion in a cadherin gene associated with resistance to Bt toxin Cry1Ac in the pink bollworm (<jats:italic>Pectinophora gossypiella</jats:italic>), a devastating global cotton pest. We found the allele (<jats:italic>r15</jats:italic>) harboring this insertion in a field population from China. The insertion is a miniature inverted repeat transposable element (MITE) that contains two additional transposons and produces two mis-spliced transcript variants (<jats:italic>r15A</jats:italic> and <jats:italic>r15B</jats:italic>). A strain homozygous for <jats:italic>r15</jats:italic> had 290-fold resistance to Cry1Ac, little or no cross-resistance to Cry2Ab, and completed its life cycle on Bt cotton producing Cry1Ac. Inheritance of resistance was recessive and tightly linked with <jats:italic>r15</jats:italic>. For transformed insect cells, susceptibility to Cry1Ac was greater for cells producing the wild-type cadherin than for cells producing the <jats:italic>r15</jats:italic> mutant proteins. Recombinant cadherin protein occurred on the cell surface in cells transformed with the wild-type or <jats:italic>r15A</jats:italic> sequences, but not in cells transformed with the <jats:italic>r15B</jats:italic> sequence. The similar resistance of pink bollworm to Cry1Ac in laboratory- and field-selected insects from China, India and the U.S. provides a basis for developing international resistance management practices.</jats:p>
摘要:
MeCP2 is an abundant protein, involved in transcriptional repression by binding to CG and non-CG methylated DNA. However, MeCP2 might also function as a transcription activator as MeCP2 is found bound to sparsely methylated promoters of actively expressed genes. Furthermore, Attachment Region Binding Protein (ARBP), the chicken ortholog of MeCP2, has been reported to bind to Matrix/scaffold attachment regions (MARs/SARs) DNA with an unmethylated 5'-CAC/GTG-3' consensus sequence. In our previous study, although we have systemically measured the binding abilities of MBDs to unmethylated CAC/GTG DNA and the complex structures reveal that the MBD2-MBD (MBD of MBD2) binds to the unmethylated CAC/GTG DNA by recognizing the complementary GTG trinucleotide, how the MeCP2-MBD (MBD of MeCP2) recognizes the unmethylated CAC/GTG DNA, especially the MARs DNA, is still unclear. In this study, we investigated the binding characteristics of MeCP2 in recognizing unmethylated 5'-CAC/GTG-3' motif containing DNA by binding and structural studies. We found that MeCP2-MBD binds to MARs DNA with a comparable binding affinity to mCG DNA, and the MeCP2-CAC/GTG complex structure revealed that MeCP2 residues R111 and R133 form base-specific interactions with the GTG motif. For comparison, we also determined crystal structures of the MeCP2-MBD bound to mCG and mCAC/GTG DNA, respectively. Together, these crystal structures illustrate the adaptability of the MeCP2-MBD toward the GTG motif as well as the mCG DNA, and also provide structural basis of a biological role of MeCP2 as a transcription activator and its disease implications in Rett syndrome.
摘要:
Bacillus thuringiensis Cry1Ac toxin binds to midgut proteins, as cadherin (CAD) and ABCC2 transporter, to form pores leading to larval death. In cell lines, co-expression of CAD and ABCC2 enhance Cry1Ac toxicity significantly, but the mechanism remains elusive. Here, we show that the expression of Helicoverpa armigera CAD (HaCAD-GFP) in Hi5 cells induces susceptibility to Cry1Ac and enhanced Cry1Ac toxicity when co-expressed with H. armigera ABCC2 (HaABCC2-GFP), since Cry1Ac toxicity increased 735-fold compared to Hi5 cells expressing HaCAD-GFP alone or 28-fold compared to HaABCC2-GFP alone. In contrast, the expression of the Spodoptera litura CAD (SlCAD-GFP) in Hi5 cells did not induce susceptibility to Cry1Ac nor it potentiated Cry1Ac toxicity with HaABCC2-GFP. To identify the CAD regions involved in the enhancement of Cry1Ac toxicity with ABCC2, the different CAD domains were replaced between SlCAD-GFP and HaCad-GFP proteins, and cytotoxicity assays were performed in Hi5 cells in the absence or presence of HaABCC2-GFP. The HaCAD toxin-binding region (TB), specifically the CAD repeat-11, was necessary to enhance Cry1Ac toxicity with ABCC2. We propose that CAD TB is involved in recruiting Cry1Ac to localize it in a good position for its interaction with the ABCC2, resulting in efficient toxin membrane insertion enhancing Cry1Ac toxicity.
摘要:
The MBD3, a methyl-CpG-binding domain (MBD)-containing protein, is a core subunit of the Mi-2/NuRD complex. Recent reports show that MBD3 recognizes both methylated CG (mCG)- and hydroxymethylated CG (hmCG)-containing DNA, with a preference for hmCG. However, whether the MBD3-MBD indeed has methyl-CG-binding ability is controversial. In this study, we provided the structural basis to support the ability of MBD3-MBD to bind mCG-containing DNA. We found that the MBD3-MBD bound to mCG-containing DNA through two conserved arginine fingers, and preferentially bound to mCG over hmCG, similar to other methyl-CpG-binding MBD proteins. Compared to its closest homolog MBD2, the tyrosine-to-phenylalanine substitution at Phe34 of MBD3 is responsible for a weaker mCG DNA binding ability. Based on the complex structure of MBD3-MBD with a nonpalindromic AmCGC DNA, we suggest that all the mCG-binding MBD domains can recognize mCG-containing DNA without orientation selectivity, consistent with our observations that the sequences outside the mCG dinucleotide do not affect mCG DNA binding significantly. DNA cytosine methylation is evolutionarily conserved in most metazoans, and most invertebrates have only one MBD gene, MBD2/3. We also looked into the mCG DNA binding ability of some invertebrates MBD2/3 and found that the conserved arginine fingers and a conserved structural fold are required for methylated DNA binding by MBD2/3-MBDs in invertebrates. Hence, our results demonstrate that mCG-binding arginine fingers embedded into a conserved structural fold are essential structural features for MBD2/3s binding to methylated DNA among metazoans.
摘要:
Growth-blocking peptide (GBP) is an insect cytokine that stimulates plasmatocyte adhesion, thereby playing a critical role in encapsulation reaction. It has been previously demonstrated that GBP-binding protein (GBPB) is released upon oenocytoid lysis in response to GBP and is responsible for subsequent clearance of GBP from hemolymph. However, current knowledge about GBPB is limited and the mechanism by which insects increase GBPB levels to inactivate GBP remains largely unexplored. Here, we have identified one GBP precursor (HaGBP precursor) gene and two GBPB (namely HaGBPB1 and HaGBPB2) genes from the cotton bollworm. Helicoverpa armigera. The HaGBP precursor was found to be predominantly expressed in fat body, whereas HaGBPB1 and HaGBPB2 were mainly expressed in hemocytes. Immunological analyses indicated that both HaGBPB1 and HaGBPB2 are released from hemocytes into the plasma during the wandering stage. Additionally, 20-hydroxyecdysone (20E) treatment or bead challenge could promote the release of HaGBPB1 and HaGBPB2 at least partly from oenocytoids into the plasma. Furthermore, we demonstrate that the N-terminus of HaGBPB1 is responsible for binding to HaGBP and suppresses HaGBP-induced plasmatocyte spreading and encapsulation. Overall, this study helps to enrich our understanding of the molecular mechanism underlying 20E mediated regulation of plasmatocyte adhesion and encapsulation via GBP-GBPB interaction. (C) 2017 Elsevier Ltd. All rights reserved.
期刊:
Journal of Bacteriology,2018年200(21):JB.00436-18 ISSN:0021-9193
通讯作者:
Qiu, Bao Sheri
作者机构:
[Zang, Sha-Sha; Li, Zheng-Ke; Qiu, Bao Sheri; Dai, Guo-Zheng; Liu, Ke; Song, Wei-Yu] Cent China Normal Univ, Sch Life Sci, Wuhan, Hubei, Peoples R China.;[Zang, Sha-Sha; Li, Zheng-Ke; Qiu, Bao Sheri; Dai, Guo-Zheng; Liu, Ke; Song, Wei-Yu] Cent China Normal Univ, Hubei Key Lab Genet Regulat & Integrat Biol, Wuhan, Hubei, Peoples R China.;[Chen, Min] Univ Sydney, Sch Life & Environm Sci, Sydney, NSW, Australia.
通讯机构:
[Qiu, Bao Sheri] C;Cent China Normal Univ, Sch Life Sci, Wuhan, Hubei, Peoples R China.;Cent China Normal Univ, Hubei Key Lab Genet Regulat & Integrat Biol, Wuhan, Hubei, Peoples R China.
摘要:
Evolution of pest resistance reduces the efficacy of insecticidal proteins from the gram-positive bacterium Bacillus thuringiensis (Bt) used widely in sprays and transgenic crops. In some previously studied strains of three major lepidopteran pests, resistance to Bt toxin Cry1Ac is associated with mutations disrupting the extracellular or cytoplasmic domains of cadherin proteins that bind Cry1Ac in the midgut of susceptible larvae. Here we report the first case of a cadherin transmembrane mutation associated with insect resistance to Bt. We discovered this mutation in a strain of the devastating global cotton pest, the pink bollworm (Pectinophora gossypiella), derived from a field population in the Yangtze River Valley of China. The mutant allele analyzed here has a 207 base pair deletion and encodes a cadherin protein lacking its transmembrane domain. Relative to a susceptible strain, a strain homozygous for this allele had 220-fold resistance to Cry1Ac and 2.1-fold cross-resistance to Cry2Ab. On transgenic cotton plants producing Cry1Ac, no susceptible larvae survived, but the resistant strain completed its life cycle. Inheritance of resistance to Cry1Ac was autosomal, recessive and tightly linked with the cadherin gene. Transportation of cadherin protein to the cell membrane and susceptibility to Cry1Ac occurred in transfected insect cells expressing the wild type cadherin allele, but not in transfected insect cells expressing the mutant cadherin allele. The results imply that the mutant allele analyzed here confers resistance to Cry1Ac by disrupting cellular trafficking of cadherin.